
starsstars 13k13k  forksforks 995995  languagelanguage ChineseChinese  GitHubGitHub ProjectProject  

GITHUB TRENDING

#4 Repository Of The Day
4

Happy-LLM

 从零开始的⼤语⾔模型原理与实践教程

深⼊理解 LLM 核⼼原理，动⼿实现你的第⼀个⼤模型

 项⽬介绍  
  很多⼩伙伴在看完 Datawhale开源项⽬： self-llm 开源⼤模型⻝⽤指南 后，感觉意犹未尽，想要深⼊了
解⼤语⾔模型的原理和训练过程。于是我们（Datawhale）决定推出《Happy-LLM》项⽬，旨在帮助⼤家深
⼊理解⼤语⾔模型的原理和训练过程。

  本项⽬是⼀个系统性的 LLM 学习教程，将从 NLP 的基本研究⽅法出发，根据 LLM 的思路及原理逐层深⼊，依
次为读者剖析 LLM 的架构基础和训练过程。同时，我们会结合⽬前 LLM 领域最主流的代码框架，演练如何亲⼿搭
建、训练⼀个 LLM，期以实现授之以⻥，更授之以渔。希望⼤家能从这本书开始⾛⼊ LLM 的浩瀚世界，探索 LLM 
的⽆尽可能。

 你将收获什么？  

 Datawhale 开源免费 完全免费的学习本项⽬所有内容

 深⼊理解 Transformer 架构和注意⼒机制

 掌握 预训练语⾔模型的基本原理

https://github.com/datawhalechina/happy-llm
https://swanlab.cn/@kmno4/Happy-LLM/overview
https://trendshift.io/repositories/14175
https://github.com/datawhalechina/self-llm


章节 关键内容 状态

前⾔ 本项⽬的缘起、背景及读者建议

第⼀章 NLP 基础概念 什么是 NLP、发展历程、任务分类、⽂本表示演进

第⼆章 Transformer 架构 注意⼒机制、Encoder-Decoder、⼿把⼿搭建 Transformer

第三章 预训练语⾔模型 Encoder-only、Encoder-Decoder、Decoder-Only 模型对⽐

第四章 ⼤语⾔模型 LLM 定义、训练策略、涌现能⼒分析

第五章 动⼿搭建⼤模型 实现 LLaMA2、训练 Tokenizer、预训练⼩型 LLM

第六章 ⼤模型训练实践 预训练、有监督微调、LoRA/QLoRA ⾼效微调

第七章 ⼤模型应⽤ 模型评测、RAG 检索增强、Agent 智能体

模型名称 下载地址

Happy-LLM-Chapter5-Base-215M  ModelScope

Happy-LLM-Chapter5-SFT-215M  ModelScope

 了解 现有⼤模型的基本结构

 动⼿实现 ⼀个完整的 LLaMA2 模型

 掌握训练 从预训练到微调的全流程

 实战应⽤ RAG、Agent 等前沿技术

 内容导航  

模型下载  

ModelScope 创空间体验地址：  创空间

PDF 版本下载  

  本 Happy-LLM PDF 教程完全开源免费。为防⽌各类营销号加⽔印后贩卖给⼤模型初学者，我们特地在 PDF ⽂
件中预先添加了不影响阅读的 Datawhale 开源标志⽔印，敬请谅解～

Happy-LLM PDF : https://github.com/datawhalechina/happy-llm/releases/tag/PDF
Happy-LLM PDF 国内下载地址 : https://www.datawhale.cn/learn/summary/179 

 如何学习  
  本项⽬适合⼤学⽣、研究⼈员、LLM 爱好者。在学习本项⽬之前，建议具备⼀定的编程经验，尤其是要对 
Python 编程语⾔有⼀定的了解。最好具备深度学习的相关知识，并了解 NLP 领域的相关概念和术语，以便更轻松
地学习本项⽬。

https://www.modelscope.cn/models/kmno4zx/happy-llm-215M-base
https://www.modelscope.cn/models/kmno4zx/happy-llm-215M-sft
https://www.modelscope.cn/studios/kmno4zx/happy_llm_215M_sft
https://github.com/datawhalechina/happy-llm/releases/tag/PDF
https://www.datawhale.cn/learn/summary/179


  本项⽬分为两部分——基础知识与实战应⽤。第1章～第4章是基础知识部分，从浅⼊深介绍 LLM 的基本原
理。其中，第1章简单介绍 NLP 的基本任务和发展，为⾮ NLP 领域研究者提供参考；第2章介绍 LLM 的基本架构
——Transformer，包括原理介绍及代码实现，作为 LLM 最重要的理论基础；第3章整体介绍经典的 PLM，包括 
Encoder-Only、Encoder-Decoder 和 Decoder-Only 三种架构，也同时介绍了当前⼀些主流 LLM 的架构和思想；
第4章则正式进⼊ LLM 部分，详细介绍 LLM 的特点、能⼒和整体训练过程。第5章～第7章是实战应⽤部分，将逐
步带领⼤家深⼊ LLM 的底层细节。其中，第5章将带领⼤家者基于 PyTorch 层亲⼿搭建⼀个 LLM，并实现预训
练、有监督微调的全流程；第6章将引⼊⽬前业界主流的 LLM 训练框架 Transformers，带领学习者基于该框架快
速、⾼效地实现 LLM 训练过程；第7章则将介绍 基于 LLM 的各种应⽤，补全学习者对 LLM 体系的认知，包括 
LLM 的评测、检索增强⽣产（Retrieval-Augmented Generation，RAG）、智能体（Agent）的思想和简单实
现。你可以根据个⼈兴趣和需求，选择性地阅读相关章节。

  在阅读本书的过程中，建议你将理论和实际相结合。LLM 是⼀个快速发展、注重实践的领域，我们建议你多投
⼊实战，复现本书提供的各种代码，同时积极参加 LLM 相关的项⽬与⽐赛，真正投⼊到 LLM 开发的浪潮中。我们
⿎励你关注 Datawhale 及其他 LLM 相关开源社区，当遇到问题时，你可以随时在本项⽬的 issue 区提问。

  最后，欢迎每⼀位读者在学习完本项⽬后加⼊到 LLM 开发者的⾏列。作为国内 AI 开源社区，我们希望充分聚
集共创者，⼀起丰富这个开源 LLM 的世界，打造更多、更全⾯特⾊ LLM 的教程。星⽕点点，汇聚成海。我们希望
成为 LLM 与普罗⼤众的阶梯，以⾃由、平等的开源精神，拥抱更恢弘⽽辽阔的 LLM 世界。

 如何贡献  
我们欢迎任何形式的贡献！

 报告 Bug - 发现问题请提交 Issue

 功能建议 - 有好想法就告诉我们

 内容完善 - 帮助改进教程内容

 代码优化 - 提交 Pull Request

 致谢  

核⼼贡献者  

宋志学-项⽬负责⼈ (Datawhale成员-中国矿业⼤学(北京))

邹⾬衡-项⽬负责⼈ (Datawhale成员-对外经济贸易⼤学)

朱信忠-指导专家（Datawhale⾸席科学家-浙江师范⼤学杭州⼈⼯智能研究院教授）

特别感谢  

感谢 @Sm1les 对本项⽬的帮助与⽀持

感谢所有为本项⽬做出贡献的开发者们 

Star History  

https://github.com/datawhalechina/happy-llm/graphs/contributors
https://github.com/KMnO4-zx
https://github.com/logan-zou
https://xinzhongzhu.github.io/
https://github.com/Sm1les


 如果这个项⽬对你有帮助，请给我们⼀个 Star！

关于 Datawhale  

扫描⼆维码关注 Datawhale 公众号，获取更多优质开源内容

 开源协议  
本作品采⽤知识共享署名-⾮商业性使⽤-相同⽅式共享 4.0 国际许可协议进⾏许可。

http://creativecommons.org/licenses/by-nc-sa/4.0/


前⾔  
2022年底，ChatGPT 的横空出世改变了⼈们对⼈⼯智能的认知，也给⾃然语⾔处理（Natural Language 
Process，NLP）领域带来了阶段性的变⾰，以 GPT 系列模型为代表的⼤语⾔模型（Large Language Model，
LLM）成为 NLP 乃⾄⼈⼯智能领域的研究主流。⾃ 2023年⾄今，LLM 始终是⼈⼯智能领域的核⼼话题，引发了⼀
轮⼜⼀轮的科技浪潮。

LLM 其实是 NLP 领域经典研究⽅法预训练语⾔模型（Pretrain Language Model，PLM）的⼀种衍⽣成果。NLP 
领域聚焦于⼈类书写的⾃然语⾔⽂本的处理、理解和⽣成，从诞⽣⾄今经历了符号主义阶段、统计学习阶段、深度
学习阶段、预训练模型阶段到⽽今⼤模型阶段的多次变⾰。以 GPT、BERT 为代表的 PLM 是上⼀阶段 NLP 领域的
核⼼研究成果，以注意⼒机制为模型架构，通过预训练-微调的阶段思想通过在海量⽆监督⽂本上进⾏⾃监督预训
练，实现了强⼤的⾃然语⾔理解能⼒。但是，传统的 PLM 仍然依赖于⼀定量有监督数据进⾏下游任务微调，且在
⾃然语⾔⽣成任务上性能还不尽如⼈意，NLP 系统的性能距离⼈们所期待的通⽤⼈⼯智能还有不⼩的差距。

LLM 是在 PLM 的基础上，通过⼤量扩⼤模型参数、预训练数据规模，并引⼊指令微调、⼈类反馈强化学习等⼿段
实现的突破性成果。相较于传统 PLM，LLM 具备涌现能⼒，具有强⼤的上下⽂学习能⼒、指令理解能⼒和⽂本⽣
成能⼒。在⼤模型阶段，NLP 研究者可以⼀定程度抛弃⼤量的监督数据标注⼯作，通过提供少量监督示例，LLM 
即能在指定下游任务上达到媲美⼤规模微调 PLM 的性能。同时，强⼤的指令理解能⼒与⽂本⽣成能⼒使 LLM 能够
直接、⾼效、准确地响应⽤户指令，从⽽真正向通⽤⼈⼯智能的⽬标逼近。

LLM 的突破性进展激发了 NLP 领域乃⾄整个⼈⼯智能领域的研究热度，海内外⾼校、研究院、⼤⼚乃⾄众多传统
领域企业都投⼊到 LLM 研究的浪潮中。⾃ 2023年⾄今，LLM 阶段性成果层出不穷，模型性能不断刷新上限，从⼀
开始的 ChatGPT，到 GPT-4，再到以 DeepSeek-R1 为代表的推理⼤模型、以 Qwen-VL 为代表的多模态⼤模型等
更强⼤、更定制化的模型，LLM 应⽤也不断涌现出能够提升实际⽣产⼒、赋能⽤户实际⽣活的创新应⽤，从”百模
⼤战“到”Agent 元年“，LLM 基座研究或许已趋向稳定的格局，LLM 的研究始终⽅兴未艾。可以肯定的是，在并不
遥远的未来，LLM 及以 LLM 为基础的应⽤⼀定会成为⼈们⽣活中的基础设施，与每个⼈的⽣活、学习、⼯作密不
可分。

在这样的背景下，深⼊理解、掌握 LLM 原理，能够动⼿应⽤、训练任意⼀个 LLM 的能⼒，对每⼀位 NLP 研究者
乃⾄其他领域的 AI 研究者⾄关重要。我们在 2023年底分别创建了 self-llm（开源⼤模型⻝⽤指南：https://github.
com/datawhalechina/self-llm ）、llm-universe（动⼿学⼤模型应⽤开发：https://github.com/datawhalechina/
llm-universe ）两个原创开源⼤模型教程，前者旨在为开发者提供⼀站式开源 LLM 部署、推理、微调的使⽤教
程，后者旨在指导开发者从零开始搭建⾃⼰的 LLM 应⽤。两个教程都帮助到了⼴泛的国内外开发者，也获得了众
多开发者的⽀持和认可，在学习者的反馈中，我们发现⽬前还缺乏⼀个从零开始讲解 LLM 原理、并引导学习者亲
⼿搭建、训练 LLM 的完整教程。

鉴于此，我们编写了这本结合 LLM 原理及实战的教程。本书将从 NLP 的基本研究⽅法出发，根据 LLM 的思路及
原理逐层深⼊，依次为读者剖析 LLM 的架构基础和训练过程。同时，我们会结合⽬前 LLM 领域最主流的代码框
架，演练如何亲⼿搭建、训练⼀个 LLM，期以实现授之以⻥，更授之以渔。希望读者能从这本书开始⾛⼊ LLM 的
浩瀚世界，探索 LLM 的⽆尽可能。

写给读者的建议  
本书包含 LLM 的理论基础、原理介绍和项⽬实战，全书包括 LLM 及 NLP 的核⼼思路剖析、公式解析与代码实
战，旨在帮助开发者深⼊理解并掌握 LLM 的基本原理与应⽤。因此，本书适合⼤学⽣、研究⼈员、LLM 爱好者阅
读。在阅读本书之前，你需要具备⼀定的编程经验，尤其是要对 Python 编程语⾔有⼀定的了解。同时，你最好具
备深度学习的相关知识，并了解 NLP 领域的相关概念和术语，以便更轻松地阅读本书。

https://github.com/datawhalechina/self-llm
https://github.com/datawhalechina/llm-universe


本书分为两部分——基础知识与实战应⽤。第1章～第4章是基础知识部分，从浅⼊深介绍 LLM 的基本原理。其
中，第1章简单介绍 NLP 的基本任务和发展，为⾮ NLP 领域研究者提供参考；第2章介绍 LLM 的基本架构——
Transformer，包括原理介绍及代码实现，作为 LLM 最重要的理论基础；第3章整体介绍经典的 PLM，包括 
Encoder-Only、Encoder-Decoder 和 Decoder-Only 三种架构，也同时介绍了当前⼀些主流 LLM 的架构和思想；
第4章则正式进⼊ LLM 部分，详细介绍 LLM 的特点、能⼒和整体训练过程。第5章～第7章是实战应⽤部分，将逐
步带领读者深⼊ LLM 的底层细节。其中，第5章将带领读者基于 PyTorch 层亲⼿搭建⼀个 LLM，并实现预训练、
有监督微调的全流程；第6章将引⼊⽬前业界主流的 LLM 训练框架 Transformers，带领读者基于该框架快速、⾼
效地实现 LLM 训练过程；第7章则将介绍 基于 LLM 的各种应⽤，补全读者对 LLM 体系的认知，包括 LLM 的评
测、检索增强⽣成（Retrieval-Augmented Generation，RAG）、智能体（Agent）的思想和简单实现。你可以根
据个⼈兴趣和需求，选择性地阅读相关章节。

在阅读本书的过程中，建议你将理论和实际相结合。LLM 是⼀个快速发展、注重实践的领域，我们建议你多投⼊实
战，复现本书提供的各种代码，同时积极参加 LLM 相关的项⽬与⽐赛，真正投⼊到 LLM 开发的浪潮中。我们⿎励
你关注 Datawhale 及其他 LLM 相关开源社区，当遇到问题时，你可以随时在 Datawhale 社区提问。Datawhale 
也会始终跟进 LLM 及其他⼈⼯智能技术的发展，欢迎你关注或加⼊到 Datawhale 社区的共建中。

最后，欢迎每⼀位读者在阅读完本书后加⼊到 LLM 开发者的⾏列。作为国内 AI 开源社区，我们希望充分聚集共创
者，⼀起丰富这个开源 LLM 的世界，打造更多、更全⾯特⾊ LLM 的教程。星⽕点点，汇聚成海。我们希望成为 
LLM 与普罗⼤众的阶梯，以⾃由、平等的开源精神，拥抱更恢弘⽽辽阔的 LLM 世界。

感谢你选择本书，祝你阅读愉快！



第⼀章 NLP 基础概念  
⾃然语⾔处理（Natural Language Processing，NLP）作为⼈⼯智能领域的⼀个重要分⽀，旨在使计算机能够理
解和处理⼈类语⾔，实现⼈机之间的⾃然交流。随着信息技术的⻜速发展，⽂本数据已成为我们⽇常⽣活中不可或
缺的⼀部分，NLP技术的进步为我们从海量⽂本中提取有⽤信息、理解语⾔的深层含义提供了强有⼒的⼯具。从早
期的基于规则的⽅法，到后来的统计学习⽅法，再到当前深度学习技术的⼴泛应⽤，NLP领域经历了多次技术⾰
新，⽂本表示作为NLP的核⼼技术之⼀，其研究和进步对于提升NLP系统的性能具有决定性的作⽤。

欢迎⼤家来到 NLP 基础概念的学习，本章节将为⼤家介绍 NLP 的基础概念，帮助⼤家更好地理解和回顾 NLP 的相
关知识。

1.1 什么是 NLP  
NLP 是 ⼀种让计算机理解、解释和⽣成⼈类语⾔的技术。它是⼈⼯智能领域中⼀个极为活跃和重要的研究⽅向，
其核⼼任务是通过计算机程序来模拟⼈类对语⾔的认知和使⽤过程。NLP 结合了计算机科学、⼈⼯智能、语⾔学和
⼼理学等多个学科的知识和技术，旨在打破⼈类语⾔和计算机语⾔之间的障碍，实现⽆缝的交流与互动。

NLP技术使得计算机能够执⾏各种复杂的语⾔处理任务，如中⽂分词、⼦词切分、词性标注、⽂本分类、实体识
别、关系抽取、⽂本摘要、机器翻译、⾃动问答等。这些任务不仅要求计算机能够识别和处理语⾔的表层结构，更
重要的是可以理解语⾔背后的深层含义，包括语义、语境、情感和⽂化等⽅⾯的复杂因素。

随着深度学习等现代技术的发展，NLP 已经取得了显著的进步。通过训练⼤量的数据，深度学习模型能够学习到语
⾔的复杂模式和结构，从⽽在多个 NLP 任务上取得了接近甚⾄超越⼈类⽔平的性能。然⽽，尽管如此，NLP 仍然
⾯临着诸多挑战，如处理歧义性、理解抽象概念、处理隐喻和讽刺等。研究⼈员正致⼒于通过更加先进的算法、更
⼤规模的数据集和更精细的语⾔模型来解决这些问题，以推动NLP技术不断发展。

1.2 NLP 发展历程  
NLP 的发展历程是从早期的规则基础⽅法，到统计⽅法，再到现在的机器学习和深度学习⽅法的演变过程。每⼀次
技术变⾰都极⼤地推动了 NLP 技术的发展，使其在机器翻译、情感分析、实体识别和⽂本摘要等任务上取得了显
著成就。随着计算能⼒的不断增强和算法的不断优化，NLP的未来将更加光明，能够在更多领域发挥更加重要的作
⽤。

早期探索（1940年代 - 1960年代）  

NLP 的早期探索始于⼆战后，当时⼈们认识到将⼀种语⾔⾃动翻译为另⼀种语⾔的重要性。1950年，艾伦·图灵提
出了图灵测试。

他说，如果⼀台机器可以通过使⽤打字机成为对话的⼀部分，并且能够完全模仿⼈类，没有明显的差异，那
么机器可以被认为是能够思考的。

这是判断机器是否能够展现出与⼈类不可区分的智能⾏为的测试。这⼀时期，诺姆·乔姆斯基提出了⽣成语法理论，
这对理解机器翻译的⼯作⽅式产⽣了重要影响。然⽽，这⼀时期的机器翻译系统⾮常简单，主要依赖字典查找和基
本的词序规则来进⾏翻译，效果并不理想。

符号主义与统计⽅法（1970年代 - 1990年代）  



1970年代以后，NLP 研究者开始探索新的领域，包括逻辑基础的范式和⾃然语⾔理解。这⼀时期，研究者分为符
号主义（或规则基础）和统计⽅法两⼤阵营。符号主义研究者关注于形式语⾔和⽣成语法，⽽统计⽅法的研究者更
加关注于统计和概率⽅法。1980年代，随着计算能⼒的提升和机器学习算法的引⼊，NLP领域出现了⾰命性的变
化，统计模型开始取代复杂的“⼿写”规则。

机器学习与深度学习（2000年代⾄今）  

2000年代以后，随着深度学习技术的发展，NLP 领域取得了显著的进步。深度学习模型如循环神经⽹络
（Recurrent Neural Network，RNN）、⻓短时记忆⽹络（Long Short-Term Memory，LSTM）和注意⼒机制等
技术被⼴泛应⽤于 NLP 任务中，取得了令⼈瞩⽬的成果。2013年，Word2Vec模型的提出开创了词向量表示的新
时代，为NLP任务提供了更加有效的⽂本表示⽅法。2018年，BERT模型的问世引领了预训练语⾔模型的新浪潮，
为NLP技术的发展带来了新的机遇和挑战。近年来，基于Transformer的模型，如GPT-3，通过训练巨⼤参数的模
型，能够⽣成⾼质量的⽂本，甚⾄在某些情况下可以与⼈类写作相媲美。

1.3 NLP 任务  
在NLP的⼴阔研究领域中，有⼏个核⼼任务构成了NLP领域的基础，它们涵盖了从⽂本的基本处理到复杂的语义理
解和⽣成的各个⽅⾯。这些任务包括但不限于中⽂分词、⼦词切分、词性标注、⽂本分类、实体识别、关系抽取、
⽂本摘要、机器翻译以及⾃动问答系统的开发。每⼀项任务都有其特定的挑战和应⽤场景，它们共同推动了语⾔技
术的发展，为处理和分析⽇益增⻓的⽂本数据提供了强⼤的⼯具。

1.3.1 中⽂分词  

中⽂分词（Chinese Word Segmentation, CWS）是 NLP 领域中的⼀个基础任务。在处理中⽂⽂本时，由于中⽂语
⾔的特点，词与词之间没有像英⽂那样的明显分隔（如空格），所以⽆法直接通过空格来确定词的边界。因此，中
⽂分词成为了中⽂⽂本处理的⾸要步骤，其⽬的是将连续的中⽂⽂本切分成有意义的词汇序列。

正确的分词结果对于后续的词性标注、实体识别、句法分析等任务⾄关重要。如果分词不准确，将直接影响到整个
⽂本处理流程的效果。

正确的分词结果对于后续的词性标注、实体识别、句法分析等任务⾄关重要。如果分词不准确，将直接影响到整个
⽂本处理流程的效果。

1.3.2 ⼦词切分  

英⽂输⼊：The cat sits on the mat.
英⽂切割输出：[The | cat | sits | on | the | mat]
中⽂输⼊：今天天⽓真好，适合出去游玩.
中⽂切割输出：["今天", "天⽓", "真", "好", "，", "适合", "出去", "游玩", "。"]

输⼊：雍和宫的荷花开的很好。

正确切割：雍和宫 | 的 | 荷花 | 开 | 的 | 很 | 好 | 。
错误切割 1：雍 | 和 | 宫的 | 荷花 | 开的 | 很好 | 。 （地名被拆散）
错误切割 2：雍和 | 宫 | 的荷 | 花开 | 的很 | 好。 （词汇边界混乱）



⼦词切分（Subword Segmentation）是 NLP 领域中的⼀种常⻅的⽂本预处理技术，旨在将词汇进⼀步分解为更
⼩的单位，即⼦词。⼦词切分特别适⽤于处理词汇稀疏问题，即当遇到罕⻅词或未⻅过的新词时，能够通过已知的
⼦词单位来理解或⽣成这些词汇。⼦词切分在处理那些拼写复杂、合成词多的语⾔（如德语）或者在预训练语⾔模
型（如BERT、GPT系列）中尤为重要。

⼦词切分的⽅法有很多种，常⻅的有Byte Pair Encoding (BPE)、WordPiece、Unigram、SentencePiece等。这些
⽅法的基本思想是将单词分解成更⼩的、频繁出现的⽚段，这些⽚段可以是单个字符、字符组合或者词根和词缀。

在这个例⼦中，通过⼦词切分，“unhappiness”这个词被分解成了三个部分：前缀“un”表示否定，“happi”是
“happy”的词根变体，表示幸福，“ness”是名词后缀，表示状态。即使模型从未⻅过“unhappiness”这个完整的单
词，它也可以通过这些已知的⼦词来理解其⼤致意思为“不幸福的状态”。

1.3.3 词性标注  

词性标注（Part-of-Speech Tagging，POS Tagging）是 NLP 领域中的⼀项基础任务，它的⽬标是为⽂本中的每个
单词分配⼀个词性标签，如名词、动词、形容词等。这个过程通常基于预先定义的词性标签集，如英语中的常⻅标
签有名词（Noun，N）、动词（Verb，V）、形容词（Adjective，Adj）等。词性标注对于理解句⼦结构、进⾏句
法分析、语义⻆⾊标注等⾼级NLP任务⾄关重要。通过词性标注，计算机可以更好地理解⽂本的含义，进⽽进⾏信
息提取、情感分析、机器翻译等更复杂的处理。

假设我们有⼀个英⽂句⼦：She is playing the guitar in the park.

词性标注的结果如下：

She (代词，Pronoun，PRP)

is (动词，Verb，VBZ)

playing (动词的现在分词，Verb，VBG)

the (限定词，Determiner，DT)

guitar (名词，Noun，NN)

in (介词，Preposition，IN)

the (限定词，Determiner，DT)

park (名词，Noun，NN)

. (标点，Punctuation，.)

词性标注通常依赖于机器学习模型，如隐⻢尔可夫模型（Hidden Markov Model，HMM）、条件随机场
（Conditional Random Field，CRF）或者基于深度学习的循环神经⽹络 RNN 和⻓短时记忆⽹络 LSTM 等。这些
模型通过学习⼤量的标注数据来预测新句⼦中每个单词的词性。

1.3.4 ⽂本分类  

输⼊：unhappiness

不使⽤⼦词切分：整个单词作为⼀个单位，输出：“unhappiness”
使⽤⼦词切分（假设BPE算法）：单词被分割为：“un”、“happi”、“ness”



⽂本分类（Text Classification）是 NLP 领域的⼀项核⼼任务，涉及到将给定的⽂本⾃动分配到⼀个或多个预定义
的类别中。这项技术⼴泛应⽤于各种场景，包括但不限于情感分析、垃圾邮件检测、新闻分类、主题识别等。⽂本
分类的关键在于理解⽂本的含义和上下⽂，并基于此将⽂本映射到特定的类别。

假设有⼀个⽂本分类任务，⽬的是将新闻⽂章分类为“体育”、“政治”或“科技”三个类别之⼀。

⽂本分类任务的成功关键在于选择合适的特征表示和分类算法，以及拥有⾼质量的训练数据。随着深度学习技术的
发展，使⽤神经⽹络进⾏⽂本分类已经成为⼀种趋势，它们能够捕捉到⽂本数据中的复杂模式和语义信息，从⽽在
许多任务中取得了显著的性能提升。

1.3.5 实体识别  

实体识别（Named Entity Recognition, NER），也称为命名实体识别，是 NLP 领域的⼀个关键任务，旨在⾃动识
别⽂本中具有特定意义的实体，并将它们分类为预定义的类别，如⼈名、地点、组织、⽇期、时间等。实体识别任
务对于信息提取、知识图谱构建、问答系统、内容推荐等应⽤很重要，它能够帮助系统理解⽂本中的关键元素及其
属性。

假设有⼀个实体识别任务，⽬的是从⽂本中识别出⼈名、地名和组织名等实体。

通过实体识别任务，我们不仅能识别出⽂本中的实体，还能了解它们的类别，为深⼊理解⽂本内容和上下⽂提供了
重要信息。随着NLP技术的发展，实体识别的精度和效率不断提⾼，可以为各种NLP应⽤提供强⼤的⽀持。

1.3.6 关系抽取  

关系抽取（Relation Extraction）是 NLP 领域中的⼀项关键任务，它的⽬标是从⽂本中识别实体之间的语义关系。
这些关系可以是因果关系、拥有关系、亲属关系、地理位置关系等，关系抽取对于理解⽂本内容、构建知识图谱、
提升机器理解语⾔的能⼒等⽅⾯具有重要意义。

假设我们有以下句⼦：

⽂本：“NBA季后赛将于下周开始，湖⼈和勇⼠将在⾸轮对决。”
类别：“体育”

⽂本：“美国总统宣布将提⾼关税，引发国际贸易争端。”
类别：“政治”

⽂本：“苹果公司发布了新款 Macbook，配备了最新的m3芯⽚。”
类别：“科技”

输⼊：李雷和韩梅梅是北京市海淀区的居⺠，他们计划在2024年4⽉7⽇去上海旅⾏。

输出：[("李雷", "⼈名"), ("韩梅梅", "⼈名"), ("北京市海淀区", "地名"), ("2024年4⽉7⽇", "⽇期"), 
("上海", "地名")]

输⼊：⽐尔·盖茨是微软公司的创始⼈。

输出：[("⽐尔·盖茨", "创始⼈", "微软公司")]



在这个例⼦中，关系抽取任务的⽬标是从⽂本中识别出“⽐尔·盖茨”和“微软公司”之间的“创始⼈”关系。通过关系抽
取，我们可以从⽂本中提取出有⽤的信息，帮助计算机更好地理解⽂本内容，为后续的知识图谱构建、问答系统等
任务提供⽀持。

1.3.7 ⽂本摘要  

⽂本摘要（Text Summarization）是 NLP 中的⼀个重要任务，⽬的是⽣成⼀段简洁准确的摘要，来概括原⽂的主
要内容。根据⽣成⽅式的不同，⽂本摘要可以分为两⼤类：抽取式摘要（Extractive Summarization）和⽣成式摘
要（Abstractive Summarization）。

抽取式摘要：抽取式摘要通过直接从原⽂中选取关键句⼦或短语来组成摘要。优点是摘要中的信息完全来⾃原
⽂，因此准确性较⾼。然⽽，由于仅仅是原⽂中句⼦的拼接，有时候⽣成的摘要可能不够流畅。

⽣成式摘要：与抽取式摘要不同，⽣成式摘要不仅涉及选择⽂本⽚段，还需要对这些⽚段进⾏重新组织和改

写，并⽣成新的内容。⽣成式摘要更具挑战性，因为它需要理解⽂本的深层含义，并能够以新的⽅式表达相同
的信息。⽣成式摘要通常需要更复杂的模型，如基于注意⼒机制的序列到序列模型（Seq2Seq）。

假设我们有以下新闻报道：

抽取式摘要：

⽣成式摘要：

⽂本摘要任务在信息检索、新闻推送、报告⽣成等领域有着⼴泛的应⽤。通过⾃动摘要，⽤户可以快速获取⽂本的
核⼼信息，节省阅读时间，提⾼信息处理效率。

1.3.8 机器翻译  

机器翻译（Machine Translation, MT）是 NLP 领域的⼀项核⼼任务，指使⽤计算机程序将⼀种⾃然语⾔（源语
⾔）⾃动翻译成另⼀种⾃然语⾔（⽬标语⾔）的过程。机器翻译不仅涉及到词汇的直接转换，更重要的是要准确传
达源语⾔⽂本的语义、⻛格和⽂化背景等，使得翻译结果在⽬标语⾔中⾃然、准确、流畅，以便跨越语⾔障碍，促
进不同语⾔使⽤者之间的交流与理解。

假设我们有⼀句中⽂：“今天天⽓很好。”，我们想要将其翻译成英⽂。

2021年5⽉22⽇，国家航天局宣布，我国⾃主研发的⽕星探测器“天问⼀号”成功在⽕星表⾯着陆。此次任务的成功，标志
着我国在深空探测领域迈出了重要⼀步。“天问⼀号”搭载了多种科学仪器，将在⽕星表⾯进⾏为期90个⽕星⽇的科学探测
⼯作，旨在研究⽕星地质结构、⽓候条件以及寻找⽣命存在的可能性。

我国⾃主研发的⽕星探测器“天问⼀号”成功在⽕星表⾯着陆，标志着我国在深空探测领域迈出了重要⼀步。

“天问⼀号”探测器成功实现⽕星着陆，代表我国在宇宙探索中取得重⼤进展。

源语⾔：今天天⽓很好。

⽬标语⾔：The weather is very nice today.



在这个简单的例⼦中，机器翻译能够准确地将中⽂句⼦转换成英⽂，保持了原句的意义和结构。然⽽，在处理更
⻓、更复杂的⽂本时，机器翻译⾯临的挑战也会相应增加。为了提⾼机器翻译的质量，研究者不断探索新的⽅法和
技术，如基于神经⽹络的Seq2Seq模型、Transformer模型等，这些模型能够学习到源语⾔和⽬标语⾔之间的复杂
映射关系，从⽽实现更加准确和流畅的翻译。

1.3.9 ⾃动问答  

⾃动问答（Automatic Question Answering, QA）是 NLP 领域中的⼀个⾼级任务，旨在使计算机能够理解⾃然语
⾔提出的问题，并根据给定的数据源⾃动提供准确的答案。⾃动问答任务模拟了⼈类理解和回答问题的能⼒，涵盖
了从简单的事实查询到复杂的推理和解释。⾃动问答系统的构建涉及多个NLP⼦任务，如信息检索、⽂本理解、知
识表示和推理等。

⾃动问答⼤致可分为三类：检索式问答（Retrieval-based QA）、知识库问答（Knowledge-based QA）和社区问
答（Community-based QA）。检索式问答通过搜索引擎等⽅式从⼤量⽂本中检索答案；知识库问答通过结构化的
知识库来回答问题；社区问答则依赖于⽤户⽣成的问答数据，如问答社区、论坛等。

⾃动问答系统的开发和优化是⼀个持续的过程，随着技术的进步和算法的改进，这些系统在准确性、理解能⼒和应
⽤范围上都有显著的提升。通过结合不同类型的数据源和技术⽅法，⾃动问答系统正变得越来越智能，越来越能够
处理复杂和多样化的问题。

1.4 ⽂本表示的发展历程  
⽂本表示的⽬的是将⼈类语⾔的⾃然形式转化为计算机可以处理的形式，也就是将⽂本数据数字化，使计算机能够
对⽂本进⾏有效的分析和处理。⽂本表示是 NLP 领域中的⼀项基础性和必要性⼯作，它直接影响甚⾄决定着 NLP 
系统的质量和性能。

在 NLP 中，⽂本表示涉及到将⽂本中的语⾔单位（如字、词、短语、句⼦等）以及它们之间的关系和结构信息转
换为计算机能够理解和操作的形式，例如向量、矩阵或其他数据结构。这样的表示不仅需要保留⾜够的语义信息，
以便于后续的 NLP 任务，如⽂本分类、情感分析、机器翻译等，还需要考虑计算效率和存储效率。

⽂本表示的发展历程经历了多个阶段，从早期的基于规则的⽅法，到统计学习⽅法，再到当前的深度学习技术，⽂
本表示技术不断演进，为 NLP 的发展提供了强⼤的⽀持。

1.4.1 词向量  

向量空间模型（Vector Space Model, VSM）是 NLP 领域中⼀个基础且强⼤的⽂本表示⽅法，最早由哈佛⼤学
Salton提出。向量空间模型通过将⽂本（包括单词、句⼦、段落或整个⽂档）转换为⾼维空间中的向量来实现⽂本
的数学化表示。在这个模型中，每个维度代表⼀个特征项（例如，字、词、词组或短语），⽽向量中的每个元素值
代表该特征项在⽂本中的权重，这种权重通过特定的计算公式（如词频TF、逆⽂档频率TF-IDF等）来确定，反映了
特征项在⽂本中的重要程度。

向量空间模型的应⽤极其⼴泛，包括但不限于⽂本相似度计算、⽂本分类、信息检索等⾃然语⾔处理任务。它将复
杂的⽂本数据转换为易于计算和分析的数学形式，使得⽂本的相似度计算和模式识别成为可能。此外，通过矩阵运
算如特征值计算、奇异值分解（singular value decomposition, SVD）等⽅法，可以优化⽂本向量表示，进⼀步提
升处理效率和效果。

然⽽，向量空间模型也存在很多问题。其中最主要的是数据稀疏性和维数灾难问题，因为特征项数量庞⼤导致向量
维度极⾼，同时多数元素值为零。此外，由于模型基于特征项之间的独⽴性假设，忽略了⽂本中的结构信息，如词
序和上下⽂信息，限制了模型的表现⼒。特征项的选择和权重计算⽅法的不⾜也是向量空间模型需要解决的问题。

VSM ⽅法词向量：



词汇表是⼀个包含所有可能出现的词语的集合。在向量空间模型中，每个词对应词汇表中的⼀个位置，通过
这种⽅式可以将词语转换为向量表示。例如，如果词汇表⼤⼩为 16384 ，那么每个词都会被表示为⼀个 
16384 维的向量，其中只有该词对应的位置为 1，其他位置都为 0。

为了解决这些问题，研究者们对向量空间模型的研究主要集中在两个⽅⾯：⼀是改进特征表示⽅法，如借助图⽅
法、主题⽅法等进⾏关键词抽取；⼆是改进和优化特征项权重的计算⽅法，可以在现有⽅法的基础上进⾏融合计算
或提出新的计算⽅法.

1.4.2 语⾔模型  

N-gram 模型是 NLP 领域中⼀种基于统计的语⾔模型，⼴泛应⽤于语⾳识别、⼿写识别、拼写纠错、机器翻译和搜
索引擎等众多任务。N-gram模型的核⼼思想是基于⻢尔可夫假设，即⼀个词的出现概率仅依赖于它前⾯的N-1个
词。这⾥的N代表连续出现单词的数量，可以是任意正整数。例如，当N=1时，模型称为unigram，仅考虑单个词
的概率；当N=2时，称为bigram，考虑前⼀个词来估计当前词的概率；当N=3时，称为trigram，考虑前两个词来
估计第三个词的概率，以此类推N-gram。

N-gram模型通过条件概率链式规则来估计整个句⼦的概率。具体⽽⾔，对于给定的⼀个句⼦，模型会计算每个N-
gram出现的条件概率，并将这些概率相乘以得到整个句⼦的概率。例如，对于句⼦“The quick brown fox”，作为
trigram模型，我们会计算 、 等概率，并将它们
相乘。

N-gram的优点是实现简单、容易理解，在许多任务中效果不错。但当N较⼤时，会出现数据稀疏性问题。模型的参
数空间会急剧增⼤，相同的N-gram序列出现的概率变得⾮常低，导致模型⽆法有效学习，模型泛化能⼒下降。此
外，N-gram模型忽略了词之间的范围依赖关系，⽆法捕捉到句⼦中的复杂结构和语义信息。

尽管存在局限性，N-gram模型由于其简单性和实⽤性，在许多 NLP 任务中仍然被⼴泛使⽤。在某些应⽤中，结合
N-gram模型和其他技术（如深度学习模型）可以获得更好的性能。

1.4.3 Word2Vec  

Word2Vec是⼀种流⾏的词嵌⼊（Word Embedding）技术，由Tomas Mikolov等⼈在2013年提出。它是⼀种基于
神经⽹络NNLM的语⾔模型，旨在通过学习词与词之间的上下⽂关系来⽣成词的密集向量表示。Word2Vec的核⼼
思想是利⽤词在⽂本中的上下⽂信息来捕捉词之间的语义关系，从⽽使得语义相似或相关的词在向量空间中距离较
近。

Word2Vec模型主要有两种架构：连续词袋模型CBOW(Continuous Bag of Words)是根据⽬标词上下⽂中的词对应
的词向量, 计算并输出⽬标词的向量表示；Skip-Gram模型与CBOW模型相反, 是利⽤⽬标词的向量表示计算上下⽂
中的词向量. 实践验证CBOW适⽤于⼩型数据集, ⽽Skip-Gram在⼤型语料中表现更好。

# "雍和宫的荷花很美"
# 词汇表⼤⼩：16384，句⼦包含词汇：["雍和宫", "的", "荷花", "很", "美"] = 5个词

vector = [0, 0, ..., 1, 0, ..., 1, 0, ..., 1, 0, ..., 1, 0, ..., 1, 0, ...]
#                    ↑          ↑          ↑          ↑          ↑
#      16384维中只有5个位置为1，其余16379个位置为0
# 实际有效维度：仅5维（⾮零维度）
# 稀疏率：(16384-5)/16384 ≈ 99.97%



相⽐于传统的⾼维稀疏表示（如One-Hot编码），Word2Vec⽣成的是低维（通常⼏百维）的密集向量，有助于减
少计算复杂度和存储需求。Word2Vec模型能够捕捉到词与词之间的语义关系，⽐如”国王“和“王后”在向量空间中的
位置会⽐较接近，因为在⼤量⽂本中，它们通常会出现在相似的上下⽂中。Word2Vec模型也可以很好的泛化到未
⻅过的词，因为它是基于上下⽂信息学习的，⽽不是基于词典。但由于CBOW/Skip-Gram模型是基于局部上下⽂
的，⽆法捕捉到⻓距离的依赖关系，缺乏整体的词与词之间的关系，因此在⼀些复杂的语义任务上表现不佳。

1.4.4 ELMo  

ELMo（Embeddings from Language Models）实现了⼀词多义、静态词向量到动态词向量的跨越式转变。⾸先
在⼤型语料库上训练语⾔模型，得到词向量模型，然后在特定任务上对模型进⾏微调，得到更适合该任务的词向
量，ELMo⾸次将预训练思想引⼊到词向量的⽣成中，使⽤双向LSTM结构，能够捕捉到词汇的上下⽂信息，⽣成更
加丰富和准确的词向量表示。

ELMo采⽤典型的两阶段过程: 第1个阶段是利⽤语⾔模型进⾏预训练; 第2个阶段是在做特定任务时, 从预训练⽹络中
提取对应单词的词向量作为新特征补充到下游任务中。基于RNN的LSTM模型训练时间⻓, 特征提取是ELMo模型优
化和提升的关键。

ELMo模型的主要优势在于其能够捕捉到词汇的多义性和上下⽂信息，⽣成的词向量更加丰富和准确，适⽤于多种 
NLP 任务。然⽽，ELMo模型也存在⼀些问题，如模型复杂度⾼、训练时间⻓、计算资源消耗⼤等。

参考⽂献  
[1] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg Corrado, Jeffrey Dean. (2013). Distributed Representations 
of Words and Phrases and their Compositionality. arXiv preprint arXiv:1310.4546.

[2] Jacob Devlin, Ming-Wei Chang, Kenton Lee, Kristina Toutanova. (2019). BERT: Pre-training of Deep 
Bidirectional Transformers for Language Understanding. arXiv preprint arXiv:1810.04805.

[3] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser, 
Illia Polosukhin. (2023). Attention Is All You Need. arXiv preprint arXiv:1706.03762.

[4] Malek Hajjem, Chiraz Latiri. (2017). Combining IR and LDA Topic Modeling for Filtering Microblogs. Procedia 
Computer Science, 112, 761–770. https://doi.org/10.1016/j.procs.2017.08.166.

[5] Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher Clark, Kenton Lee, Luke 
Zettlemoyer. (2018). Deep contextualized word representations. arXiv preprint arXiv:1802.05365.

[6] Salton, G., Wong, A., Yang, C. S. (1975). A vector space model for automatic indexing. Communications of 
the ACM, 18(11), 613–620. https://doi.org/10.1145/361219.361220.

[7] 赵京胜,宋梦雪,⾼祥,等.⾃然语⾔处理中的⽂本表示研究[J].软件学报,2022,33(01):102-
128.DOI:10.13328/j.cnki.jos.006304.

[8] 中⽂信息处理发展报告（2016）前⾔[C]//中⽂信息处理发展报告（2016）.中国中⽂信息学会;,2016:2-
3.DOI:10.26914/c.cnkihy.2016.003326.

 

https://doi.org/10.1016/j.procs.2017.08.166
https://doi.org/10.1145/361219.361220


第⼆章 Transformer 架构  
2.1 注意⼒机制  

2.1.1 什么是注意⼒机制  

随着 NLP 从统计机器学习向深度学习迈进，作为 NLP 核⼼问题的⽂本表示⽅法也逐渐从统计学习向深度学习迈进。正如我们在第⼀章所介绍的，⽂本
表示从最初的通过统计学习模型进⾏计算的向量空间模型、语⾔模型，通过 Word2Vec 的单层神经⽹络进⼊到通过神经⽹络学习⽂本表示的时代。但
是，从 计算机视觉（Computer Vision，CV）为起源发展起来的神经⽹络，其核⼼架构有三种：

全连接神经⽹络（Feedforward Neural Network，FNN），即每⼀层的神经元都和上下两层的每⼀个神经元完全连接，如图2.1所示:

图2.1 全连接神经⽹络

卷积神经⽹络（Convolutional Neural Network，CNN），即训练参数量远⼩于全连接神经⽹络的卷积层来进⾏特征提取和学习，如图2.2所示:

图2.2 卷积神经⽹络

循环神经⽹络（Recurrent Neural Network，RNN），能够使⽤历史信息作为输⼊、包含环和⾃重复的⽹络，如图2.3所示:



图2.3 循环神经⽹络

由于 NLP 任务所需要处理的⽂本往往是序列，因此专⽤于处理序列、时序数据的 RNN 往往能够在 NLP 任务上取得最优的效果。事实上，在注意⼒机
制横空出世之前，RNN 以及 RNN 的衍⽣架构 LSTM 是 NLP 领域当之⽆愧的霸主。例如，我们在第⼀章讲到过的开创了预训练思想的⽂本表示模型 
ELMo，就是使⽤的双向 LSTM 作为⽹络架构。

但 RNN 及 LSTM 虽然具有捕捉时序信息、适合序列⽣成的优点，却有两个难以弥补的缺陷：

1. 序列依序计算的模式能够很好地模拟时序信息，但限制了计算机并⾏计算的能⼒。由于序列需要依次输⼊、依序计算，图形处理器（Graphics 
Processing Unit，GPU）并⾏计算的能⼒受到了极⼤限制，导致 RNN 为基础架构的模型虽然参数量不算特别⼤，但计算时间成本却很⾼；

2. RNN 难以捕捉⻓序列的相关关系。在 RNN 架构中，距离越远的输⼊之间的关系就越难被捕捉，同时 RNN 需要将整个序列读⼊内存依次计算，也
限制了序列的⻓度。虽然 LSTM 中通过⻔机制对此进⾏了⼀定优化，但对于较远距离相关关系的捕捉，RNN 依旧是不如⼈意的。

针对这样的问题，Vaswani 等学者参考了在 CV 领域被提出、被经常融⼊到 RNN 中使⽤的注意⼒机制（Attention）（注意，虽然注意⼒机制在 NLP 
被发扬光⼤，但其确实是在 CV 领域被提出的），创新性地搭建了完全由注意⼒机制构成的神经⽹络——Transformer，也就是⼤语⾔模型（Large 
Language Model，LLM）的⿐祖及核⼼架构，从⽽让注意⼒机制⼀跃成为深度学习最核⼼的架构之⼀。

那么，究竟什么是注意⼒机制？

注意⼒机制最先源于计算机视觉领域，其核⼼思想为当我们关注⼀张图⽚，我们往往⽆需看清楚全部内容⽽仅将注意⼒集中在重点部分即可。⽽在⾃然
语⾔处理领域，我们往往也可以通过将重点注意⼒集中在⼀个或⼏个 token，从⽽取得更⾼效⾼质的计算效果。

注意⼒机制有三个核⼼变量：Query（查询值）、Key（键值）和 Value（真值）。我们可以通过⼀个案例来理解每⼀个变量所代表的含义。例如，当
我们有⼀篇新闻报道，我们想要找到这个报道的时间，那么，我们的 Query 可以是类似于“时间”、“⽇期”⼀类的向量（为了便于理解，此处使⽤⽂本来
表示，但其实际是稠密的向量），Key 和 Value 会是整个⽂本。通过对 Query 和 Key 进⾏运算我们可以得到⼀个权重，这个权重其实反映了从 Query 
出发，对⽂本每⼀个 token 应该分布的注意⼒相对⼤⼩。通过把权重和 Value 进⾏运算，得到的最后结果就是从 Query 出发计算整个⽂本注意⼒得到
的结果。

具体⽽⾔，注意⼒机制的特点是通过计算 Query 与Key的相关性为真值加权求和，从⽽拟合序列中每个词同其他词的相关关系。

2.1.2 深⼊理解注意⼒机制  

刚刚我们说到，注意⼒机制有三个核⼼变量：查询值 Query，键值 Key 和 真值 Value。接下来我们以字典为例，逐步分析注意⼒机制的计算公式是如
何得到的，从⽽帮助读者深⼊理解注意⼒机制。⾸先，我们有这样⼀个字典：

此时，字典的键就是注意⼒机制中的键值 Key，⽽字典的值就是真值 Value。字典⽀持我们进⾏精确的字符串匹配，例如，如果我们想要查找的值也就
是查询值 Query 为“apple”，那么我们可以直接通过将 Query 与 Key 做匹配来得到对应的 Value。

{

    "apple":10,
    "banana":5,
    "chair":2
}



但是，如果我们想要匹配的 Query 是⼀个包含多个 Key 的概念呢？例如，我们想要查找“fruit”，此时，我们应该将 apple 和 banana 都匹配到，但不
能匹配到 chair。因此，我们往往会选择将 Key 对应的 Value 进⾏组合得到最终的 Value。

例如，当我们的 Query 为“fruit”，我们可以分别给三个 Key 赋予如下的权重：

那么，我们最终查询到的值应该是：

 

给不同 Key 所赋予的不同权重，就是我们所说的注意⼒分数，也就是为了查询到 Query，我们应该赋予给每⼀个 Key 多少注意⼒。但是，如何针对每
⼀个 Query，计算出对应的注意⼒分数呢？从直观上讲，我们可以认为 Key 与 Query 相关性越⾼，则其所应该赋予的注意⼒权重就越⼤。但是，我们
如何能够找到⼀个合理的、能够计算出正确的注意⼒分数的⽅法呢？

在第⼀章中，我们有提到词向量的概念。通过合理的训练拟合，词向量能够表征语义信息，从⽽让语义相近的词在向量空间中距离更近，语义较远的词
在向量空间中距离更远。我们往往⽤欧式距离来衡量词向量的相似性，但我们同样也可以⽤点积来进⾏度量：

 

根据词向量的定义，语义相似的两个词对应的词向量的点积应该⼤于0，⽽语义不相似的词向量点积应该⼩于0。

那么，我们就可以⽤点积来计算词之间的相似度。假设我们的 Query 为“fruit”，对应的词向量为  ；我们的 Key 对应的词向量为 
 ,则我们可以计算 Query 和每⼀个键的相似程度：

 

此处的 K 即为将所有 Key 对应的词向量堆叠形成的矩阵。基于矩阵乘法的定义，x 即为 q 与每⼀个 k 值的点积。现在我们得到的 x 即反映了 Query 和
每⼀个 Key 的相似程度，我们再通过⼀个 Softmax 层将其转化为和为 1 的权重：

 

这样，得到的向量就能够反映 Query 和每⼀个 Key 的相似程度，同时⼜相加权重为 1，也就是我们的注意⼒分数了。最后，我们再将得到的注意⼒分
数和值向量做对应乘积即可。根据上述过程，我们就可以得到注意⼒机制计算的基本公式：

 

不过，此时的值还是⼀个标量，同时，我们此次只查询了⼀个 Query。我们可以将值转化为维度为  的向量，同时⼀次性查询多个 Query，同样将多
个 Query 对应的词向量堆叠在⼀起形成矩阵 Q，得到公式：

 

⽬前，我们离标准的注意⼒机制公式还差最后⼀步。在上⼀个公式中，如果 Q 和 K 对应的维度  ⽐较⼤，softmax 放缩时就⾮常容易受影响，使不
同值之间的差异较⼤，从⽽影响梯度的稳定性。因此，我们要将 Q 和 K 乘积的结果做⼀个放缩：

 

这也就是注意⼒机制的核⼼计算公式了。

2.1.3 注意⼒机制的实现  

基于上⽂，我们可以很简单地使⽤ Pytorch 来实现注意⼒机制的代码：

{

    "apple":0.6,
    "banana":0.4,
    "chair":0
}

'''注意⼒计算函数'''
def attention(query, key, value, dropout=None):

    '''
    args:
    query: 查询值矩阵
    key: 键值矩阵
    value: 真值矩阵
    '''
    # 获取键向量的维度，键向量的维度和值向量的维度相同
    d_k = query.size(-1) 
    # 计算Q与K的内积并除以根号dk
    # transpose——相当于转置
    scores = torch.matmul(query, key.transpose(-2, -1)) / math.sqrt(d_k)
    # Softmax



注意，在上⽂代码中，我们假设输⼊的 q、k、v 是已经经过转化的词向量矩阵，也就是公式中的 Q、K、V。我们仅需要通过上述⼏⾏代码，就可以实
现核⼼的注意⼒机制计算。

2.1.4 ⾃注意⼒  

根据上⽂的分析，我们可以发现，注意⼒机制的本质是对两段序列的元素依次进⾏相似度计算，寻找出⼀个序列的每个元素对另⼀个序列的每个元素的
相关度，然后基于相关度进⾏加权，即分配注意⼒。⽽这两段序列即是我们计算过程中 Q、K、V 的来源。

但是，在我们的实际应⽤中，我们往往只需要计算 Query 和 Key 之间的注意⼒结果，很少存在额外的真值 Value。也就是说，我们其实只需要拟合两
个⽂本序列。在经典的 注意⼒机制中，Q 往往来⾃于⼀个序列，K 与 V 来⾃于另⼀个序列，都通过参数矩阵计算得到，从⽽可以拟合这两个序列之间
的关系。例如在 Transformer 的 Decoder 结构中，Q 来⾃于 Decoder 的输⼊，K 与 V 来⾃于 Encoder 的输出，从⽽拟合了编码信息与历史信息之间
的关系，便于综合这两种信息实现未来的预测。

但在 Transformer 的 Encoder 结构中，使⽤的是 注意⼒机制的变种 —— ⾃注意⼒（self-attention，⾃注意⼒）机制。所谓⾃注意⼒，即是计算本身
序列中每个元素对其他元素的注意⼒分布，即在计算过程中，Q、K、V 都由同⼀个输⼊通过不同的参数矩阵计算得到。在 Encoder 中，Q、K、V 分别
是输⼊对参数矩阵  做积得到，从⽽拟合输⼊语句中每⼀个 token 对其他所有 token 的关系。、 、

通过⾃注意⼒机制，我们可以找到⼀段⽂本中每⼀个 token 与其他所有 token 的相关关系⼤⼩，从⽽建模⽂本之间的依赖关系。在代码中的实现，
self-attention 机制其实是通过给 Q、K、V 的输⼊传⼊同⼀个参数实现的：

2.1.5 掩码⾃注意⼒  

掩码⾃注意⼒，即 Mask Self-Attention，是指使⽤注意⼒掩码的⾃注意⼒机制。掩码的作⽤是遮蔽⼀些特定位置的 token，模型在学习的过程中，会
忽略掉被遮蔽的 token。

使⽤注意⼒掩码的核⼼动机是让模型只能使⽤历史信息进⾏预测⽽不能看到未来信息。使⽤注意⼒机制的 Transformer 模型也是通过类似于 n-gram 
的语⾔模型任务来学习的，也就是对⼀个⽂本序列，不断根据之前的 token 来预测下⼀个 token，直到将整个⽂本序列补全。

例如，如果待学习的⽂本序列是 【BOS】I like you【EOS】，那么，模型会按如下顺序进⾏预测和学习：

理论上来说，只要学习的语料⾜够多，通过上述的过程，模型可以学会任意⼀种⽂本序列的建模⽅式，也就是可以对任意的⽂本进⾏补全。

但是，我们可以发现，上述过程是⼀个串⾏的过程，也就是需要先完成 Step 1，才能做 Step 2，接下来逐步完成整个序列的补全。我们在⼀开始就说
过，Transformer 相对于 RNN 的核⼼优势之⼀即在于其可以并⾏计算，具有更⾼的计算效率。如果对于每⼀个训练语料，模型都需要串⾏完成上述过
程才能完成学习，那么很明显没有做到并⾏计算，计算效率很低。

针对这个问题，Transformer 就提出了掩码⾃注意⼒的⽅法。掩码⾃注意⼒会⽣成⼀串掩码，来遮蔽未来信息。例如，我们待学习的⽂本序列仍然是 
【BOS】I like you【EOS】，我们使⽤的注意⼒掩码是【MASK】，那么模型的输⼊为：

在每⼀⾏输⼊中，模型仍然是只看到前⾯的 token，预测下⼀个 token。但是注意，上述输⼊不再是串⾏的过程，⽽可以⼀起并⾏地输⼊到模型中，模
型只需要每⼀个样本根据未被遮蔽的 token 来预测下⼀个 token 即可，从⽽实现了并⾏的语⾔模型。

观察上述的掩码，我们可以发现其实则是⼀个和⽂本序列等⻓的上三⻆矩阵。我们可以简单地通过创建⼀个和输⼊同等⻓度的上三⻆矩阵作为注意⼒掩
码，再使⽤掩码来遮蔽掉输⼊即可。也就是说，当输⼊维度为 （batch_size, seq_len, hidden_size）时，我们的 Mask 矩阵维度⼀般为 (1, seq_len, 
seq_len)（通过⼴播实现同⼀个 batch 中不同样本的计算）。

在具体实现中，我们通过以下代码⽣成 Mask 矩阵：

    p_attn = scores.softmax(dim=-1)
    if dropout is not None:
        p_attn = dropout(p_attn)
        # 采样
     # 根据计算结果对value进⾏加权求和
    return torch.matmul(p_attn, value), p_attn

# attention 为上⽂定义的注意⼒计算函数
attention(x, x, x)

Step 1：输⼊ 【BOS】，输出 I

Step 2：输⼊ 【BOS】I，输出 like

Step 3：输⼊ 【BOS】I like，输出 you
Step 4：输⼊ 【BOS】I like you，输出 【EOS】

<BOS> 【MASK】【MASK】【MASK】【MASK】
<BOS>    I   【MASK】 【MASK】【MASK】
<BOS>    I     like  【MASK】【MASK】
<BOS>    I     like    you  【MASK】
<BOS>    I     like    you   </EOS>



⽣成的 Mask 矩阵会是⼀个上三⻆矩阵，上三⻆位置的元素均为 -inf，其他位置的元素置为0。

在注意⼒计算时，我们会将计算得到的注意⼒分数与这个掩码做和，再进⾏ Softmax 操作：

通过做求和，上三⻆区域（也就是应该被遮蔽的 token 对应的位置）的注意⼒分数结果都变成了 -inf，⽽下三⻆区域的分数不变。再做 Softmax 操
作， -inf  的值在经过 Softmax 之后会被置为 0，从⽽忽略了上三⻆区域计算的注意⼒分数，从⽽实现了注意⼒遮蔽。

2.1.6 多头注意⼒  

注意⼒机制可以实现并⾏化与⻓期依赖关系拟合，但⼀次注意⼒计算只能拟合⼀种相关关系，单⼀的注意⼒机制很难全⾯拟合语句序列⾥的相关关系。
因此 Transformer 使⽤了多头注意⼒机制（Multi-Head Attention），即同时对⼀个语料进⾏多次注意⼒计算，每次注意⼒计算都能拟合不同的关系，
将最后的多次结果拼接起来作为最后的输出，即可更全⾯深⼊地拟合语⾔信息。

在原论⽂中，作者也通过实验证实，多头注意⼒计算中，每个不同的注意⼒头能够拟合语句中的不同信息，如图2.4所示：

图2.4 多头注意⼒机制

# 创建⼀个上三⻆矩阵，⽤于遮蔽未来信息。
# 先通过 full 函数创建⼀个 1 * seq_len * seq_len 的矩阵
mask = torch.full((1, args.max_seq_len, args.max_seq_len), float("-inf"))

# triu 函数的功能是创建⼀个上三⻆矩阵
mask = torch.triu(mask, diagonal=1)

# 此处的 scores 为计算得到的注意⼒分数，mask 为上⽂⽣成的掩码矩阵
scores = scores + mask[:, :seqlen, :seqlen]

scores = F.softmax(scores.float(), dim=-1).type_as(xq)



上层与下层分别是两个注意⼒头对同⼀段语句序列进⾏⾃注意⼒计算的结果，可以看到，对于不同的注意⼒头，能够拟合不同层次的相关信息。通过多
个注意⼒头同时计算，能够更全⾯地拟合语句关系。

事实上，所谓的多头注意⼒机制其实就是将原始的输⼊序列进⾏多组的⾃注意⼒处理；然后再将每⼀组得到的⾃注意⼒结果拼接起来，再通过⼀个线性
层进⾏处理，得到最终的输出。我们⽤公式可以表示为：

 

其最直观的代码实现并不复杂，即 n 个头就有 n 组3个参数矩阵，每⼀组进⾏同样的注意⼒计算，但由于是不同的参数矩阵从⽽通过反向传播实现了不
同的注意⼒结果，然后将 n 个结果拼接起来输出即可。

但上述实现时空复杂度均较⾼，我们可以通过矩阵运算巧妙地实现并⾏的多头计算，其核⼼逻辑在于使⽤三个组合矩阵来代替了n个参数矩阵的组合，
也就是矩阵内积再拼接其实等同于拼接矩阵再内积。具体实现可以参考下列代码：

import torch.nn as nn

import torch

'''多头⾃注意⼒计算模块'''
class MultiHeadAttention(nn.Module):

    def __init__(self, args: ModelArgs, is_causal=False):
        # 构造函数
        # args: 配置对象
        super().__init__()
        # 隐藏层维度必须是头数的整数倍，因为后⾯我们会将输⼊拆成头数个矩阵
        assert args.dim % args.n_heads == 0
        # 模型并⾏处理⼤⼩，默认为1。
        model_parallel_size = 1
        # 本地计算头数，等于总头数除以模型并⾏处理⼤⼩。
        self.n_local_heads = args.n_heads // model_parallel_size
        # 每个头的维度，等于模型维度除以头的总数。
        self.head_dim = args.dim // args.n_heads

        # Wq, Wk, Wv 参数矩阵，每个参数矩阵为 n_embd x n_embd
        # 这⾥通过三个组合矩阵来代替了n个参数矩阵的组合，其逻辑在于矩阵内积再拼接其实等同于拼接矩阵再内积，
        # 不理解的读者可以⾃⾏模拟⼀下，每⼀个线性层其实相当于n个参数矩阵的拼接
        self.wq = nn.Linear(args.dim, args.n_local_heads * self.head_dim, bias=False)
        self.wk = nn.Linear(args.dim, args.n_local_heads * self.head_dim, bias=False)
        self.wv = nn.Linear(args.dim, args.n_local_heads * self.head_dim, bias=False)
        # 输出权重矩阵，维度为 dim x n_embd（head_dim = n_embeds / n_heads）
        self.wo = nn.Linear(args.n_local_heads * self.head_dim, args.dim, bias=False)
        # 注意⼒的 dropout

        self.attn_dropout = nn.Dropout(args.dropout)
        # 残差连接的 dropout

        self.resid_dropout = nn.Dropout(args.dropout)
         
        # 创建⼀个上三⻆矩阵，⽤于遮蔽未来信息
        # 注意，因为是多头注意⼒，Mask 矩阵⽐之前我们定义的多⼀个维度
        if is_causal:
           mask = torch.full((1, 1, args.max_seq_len, args.max_seq_len), float("-inf"))
           mask = torch.triu(mask, diagonal=1)
           # 注册为模型的缓冲区
           self.register_buffer("mask", mask)

    def forward(self, q: torch.Tensor, k: torch.Tensor, v: torch.Tensor):

        # 获取批次⼤⼩和序列⻓度，[batch_size, seq_len, dim]

        bsz, seqlen, _ = q.shape

        # 计算查询（Q）、键（K）、值（V）,输⼊通过参数矩阵层，维度为 (B, T, n_embed) x (n_embed, n_embed) -> (B, T, n_embed)

        xq, xk, xv = self.wq(q), self.wk(k), self.wv(v)

        # 将 Q、K、V 拆分成多头，维度为 (B, T, n_head, C // n_head)，然后交换维度，变成 (B, n_head, T, C // n_head)

        # 因为在注意⼒计算中我们是取了后两个维度参与计算
        # 为什么要先按B*T*n_head*C//n_head展开再互换1、2维度⽽不是直接按注意⼒输⼊展开，是因为view的展开⽅式是直接把输⼊全部排开，
        # 然后按要求构造，可以发现只有上述操作能够实现我们将每个头对应部分取出来的⽬标
        xq = xq.view(bsz, seqlen, self.n_local_heads, self.head_dim)
        xk = xk.view(bsz, seqlen, self.n_local_heads, self.head_dim)
        xv = xv.view(bsz, seqlen, self.n_local_heads, self.head_dim)
        xq = xq.transpose(1, 2)
        xk = xk.transpose(1, 2)



2.2 Encoder-Decoder  
在上⼀节，我们详细介绍了 Transformer 的核⼼——注意⼒机制。在《Attention is All You Need》⼀⽂中，作者通过仅使⽤注意⼒机制⽽抛弃传统的 
RNN、CNN 架构搭建出 Transformer 模型，从⽽带来了 NLP 领域的⼤变⾰。在 Transformer 中，使⽤注意⼒机制的是其两个核⼼组件——Encoder
（编码器）和 Decoder（解码器）。事实上，后续基于 Transformer 架构⽽来的预训练语⾔模型基本都是对 Encoder-Decoder 部分进⾏改进来构建
新的模型架构，例如只使⽤ Encoder 的 BERT、只使⽤ Decoder 的 GPT 等。

在本节中，我们将以上⼀节所介绍的 注意⼒机制为基础，从 Transformer 所针对的 Seq2Seq 任务出发，解析 Transformer 的 Encoder-Decoder 结
构。

2.2.1 Seq2Seq 模型  

Seq2Seq，即序列到序列，是⼀种经典 NLP 任务。具体⽽⾔，是指模型输⼊的是⼀个⾃然语⾔序列  ，输出的是⼀个可能
不等⻓的⾃然语⾔序列  。事实上，Seq2Seq 是 NLP 最经典的任务，⼏乎所有的 NLP 任务都可以视为 Seq2Seq 任务。
例如⽂本分类任务，可以视为输出⻓度为 1 的⽬标序列（如在上式中  = 1）；词性标注任务，可以视为输出与输⼊序列等⻓的⽬标序列（如在上式中 

 =  ）。

机器翻译任务即是⼀个经典的 Seq2Seq 任务，例如，我们的输⼊可能是“今天天⽓真好”，输出是“Today is a good day.”。Transformer 是⼀个经典的 
Seq2Seq 模型，即模型的输⼊为⽂本序列，输出为另⼀个⽂本序列。事实上，Transformer ⼀开始正是应⽤在机器翻译任务上的。

对于 Seq2Seq 任务，⼀般的思路是对⾃然语⾔序列进⾏编码再解码。所谓编码，就是将输⼊的⾃然语⾔序列通过隐藏层编码成能够表征语义的向量
（或矩阵），可以简单理解为更复杂的词向量表示。⽽解码，就是对输⼊的⾃然语⾔序列编码得到的向量或矩阵通过隐藏层输出，再解码成对应的⾃然
语⾔⽬标序列。通过编码再解码，就可以实现 Seq2Seq 任务。

Transformer 中的 Encoder，就是⽤于上述的编码过程；Decoder 则⽤于上述的解码过程。Transformer 结构，如图2.5所示：

        xv = xv.transpose(1, 2)

        # 注意⼒计算
        # 计算 QK^T / sqrt(d_k)，维度为 (B, nh, T, hs) x (B, nh, hs, T) -> (B, nh, T, T)

        scores = torch.matmul(xq, xk.transpose(2, 3)) / math.sqrt(self.head_dim)
        # 掩码⾃注意⼒必须有注意⼒掩码
        if self.is_causal:
            assert hasattr(self, 'mask')
            # 这⾥截取到序列⻓度，因为有些序列可能⽐ max_seq_len 短
            scores = scores + self.mask[:, :, :seqlen, :seqlen]
        # 计算 softmax，维度为 (B, nh, T, T)
        scores = F.softmax(scores.float(), dim=-1).type_as(xq)
        # 做 Dropout

        scores = self.attn_dropout(scores)
        # V * Score，维度为(B, nh, T, T) x (B, nh, T, hs) -> (B, nh, T, hs)
        output = torch.matmul(scores, xv)

        # 恢复时间维度并合并头。
        # 将多头的结果拼接起来, 先交换维度为 (B, T, n_head, C // n_head)，再拼接成 (B, T, n_head * C // n_head)

        # contiguous 函数⽤于重新开辟⼀块新内存存储，因为Pytorch设置先transpose再view会报错，
        # 因为view直接基于底层存储得到，然⽽transpose并不会改变底层存储，因此需要额外存储
        output = output.transpose(1, 2).contiguous().view(bsz, seqlen, -1)

        # 最终投影回残差流。
        output = self.wo(output)
        output = self.resid_dropout(output)
        return output



图2.5 编码器-解码器结构

Transformer 由 Encoder 和 Decoder 组成，每⼀个 Encoder（Decoder）⼜由 6个 Encoder（Decoder）Layer 组成。输⼊源序列会进⼊ Encoder 进
⾏编码，到 Encoder Layer 的最顶层再将编码结果输出给 Decoder Layer 的每⼀层，通过 Decoder 解码后就可以得到输出⽬标序列了。

接下来，我们将⾸先介绍 Encoder 和 Decoder 内部传统神经⽹络的经典结构——前馈神经⽹络（FNN）、层归⼀化（Layer Norm）和残差连接
（Residual Connection），然后进⼀步分析 Encoder 和 Decoder 的内部结构。

2.2.2 前馈神经⽹络  

前馈神经⽹络（Feed Forward Neural Network，下简称 FFN），也就是我们在上⼀节提过的每⼀层的神经元都和上下两层的每⼀个神经元完全连接的
⽹络结构。每⼀个 Encoder Layer 都包含⼀个上⽂讲的注意⼒机制和⼀个前馈神经⽹络。前馈神经⽹络的实现是较为简单的：

class MLP(nn.Module):

    '''前馈神经⽹络'''

    def __init__(self, dim: int, hidden_dim: int, dropout: float):
        super().__init__()



注意，Transformer 的前馈神经⽹络是由两个线性层中间加⼀个 RELU 激活函数组成的，以及前馈神经⽹络还加⼊了⼀个 Dropout 层来防⽌过拟合。

2.2.3 层归⼀化  

层归⼀化，也就是 Layer Norm，是深度学习中经典的归⼀化操作。神经⽹络主流的归⼀化⼀般有两种，批归⼀化（Batch Norm）和层归⼀化（Layer 
Norm）。

归⼀化核⼼是为了让不同层输⼊的取值范围或者分布能够⽐较⼀致。由于深度神经⽹络中每⼀层的输⼊都是上⼀层的输出，因此多层传递下，对⽹络中
较⾼的层，之前的所有神经层的参数变化会导致其输⼊的分布发⽣较⼤的改变。也就是说，随着神经⽹络参数的更新，各层的输出分布是不相同的，且
差异会随着⽹络深度的增⼤⽽增⼤。但是，需要预测的条件分布始终是相同的，从⽽也就造成了预测的误差。

因此，在深度神经⽹络中，往往需要归⼀化操作，将每⼀层的输⼊都归⼀化成标准正态分布。批归⼀化是指在⼀个 mini-batch 上进⾏归⼀化，相当于
对⼀个 batch 对样本拆分出来⼀部分，⾸先计算样本的均值：

 

其中，  是样本 i 在第 j 个维度上的值，m 就是 mini-batch 的⼤⼩。

再计算样本的⽅差：

 

最后，对每个样本的值减去均值再除以标准差来将这⼀个 mini-batch 的样本的分布转化为标准正态分布：

 

此处加上  这⼀极⼩量是为了避免分⺟为0。

但是，批归⼀化存在⼀些缺陷，例如：

当显存有限，mini-batch 较⼩时，Batch Norm 取的样本的均值和⽅差不能反映全局的统计分布信息，从⽽导致效果变差；

对于在时间维度展开的 RNN，不同句⼦的同⼀分布⼤概率不同，所以 Batch Norm 的归⼀化会失去意义；

在训练时，Batch Norm 需要保存每个 step 的统计信息（均值和⽅差）。在测试时，由于变⻓句⼦的特性，测试集可能出现⽐训练集更⻓的句
⼦，所以对于后⾯位置的 step，是没有训练的统计量使⽤的；

应⽤ Batch Norm，每个 step 都需要去保存和计算 batch 统计量，耗时⼜耗⼒

因此，出现了在深度神经⽹络中更常⽤、效果更好的层归⼀化（Layer Norm）。相较于 Batch Norm 在每⼀层统计所有样本的均值和⽅差，Layer 
Norm 在每个样本上计算其所有层的均值和⽅差，从⽽使每个样本的分布达到稳定。Layer Norm 的归⼀化⽅式其实和 Batch Norm 是完全⼀样的，只
是统计统计量的维度不同。

基于上述进⾏归⼀化的公式，我们可以简单地实现⼀个 Layer Norm 层：

        # 定义第⼀层线性变换，从输⼊维度到隐藏维度
        self.w1 = nn.Linear(dim, hidden_dim, bias=False)
        # 定义第⼆层线性变换，从隐藏维度到输⼊维度
        self.w2 = nn.Linear(hidden_dim, dim, bias=False)
        # 定义dropout层，⽤于防⽌过拟合
        self.dropout = nn.Dropout(dropout)

    def forward(self, x):
        # 前向传播函数
        # ⾸先，输⼊x通过第⼀层线性变换和RELU激活函数
        # 最后，通过第⼆层线性变换和dropout层
        return self.dropout(self.w2(F.relu(self.w1(x))))
    

class LayerNorm(nn.Module):

    ''' Layer Norm 层'''
    def __init__(self, features, eps=1e-6):
  super().__init__()

    # 线性矩阵做映射
  self.a_2 = nn.Parameter(torch.ones(features))

  self.b_2 = nn.Parameter(torch.zeros(features))

  self.eps = eps

  

    def forward(self, x):
  # 在统计每个样本所有维度的值，求均值和⽅差
  mean = x.mean(-1, keepdim=True) # mean: [bsz, max_len, 1]

  std = x.std(-1, keepdim=True) # std: [bsz, max_len, 1]



注意，在我们上⽂实现的 Layer Norm 层中，有两个线性矩阵进⾏映射。

2.2.4 残差连接  

由于 Transformer 模型结构较复杂、层数较深，为了避免模型退化，Transformer 采⽤了残差连接的思想来连接每⼀个⼦层。残差连接，即下⼀层的
输⼊不仅是上⼀层的输出，还包括上⼀层的输⼊。残差连接允许最底层信息直接传到最⾼层，让⾼层专注于残差的学习。

例如，在 Encoder 中，在第⼀个⼦层，输⼊进⼊多头⾃注意⼒层的同时会直接传递到该层的输出，然后该层的输出会与原输⼊相加，再进⾏标准化。
在第⼆个⼦层也是⼀样。即：

 

 

我们在代码实现中，通过在层的 forward 计算中加上原值来实现残差连接：

在上⽂代码中，self.attention_norm 和 self.fnn_norm 都是 LayerNorm 层，self.attn 是注意⼒层，⽽ self.feed_forward 是前馈神经⽹络。

2.2.5 Encoder  

在实现上述组件之后，我们可以搭建起 Transformer 的 Encoder。Encoder 由 N 个 Encoder Layer 组成，每⼀个 Encoder Layer 包括⼀个注意⼒层和
⼀个前馈神经⽹络。因此，我们可以⾸先实现⼀个 Encoder Layer：

然后我们搭建⼀个 Encoder，由 N 个 Encoder Layer 组成，在最后会加⼊⼀个 Layer Norm 实现规范化：

通过 Encoder 的输出，就是输⼊编码之后的结果。

2.2.6 Decoder  

    # 注意这⾥也在最后⼀个维度发⽣了⼴播
  return self.a_2 * (x - mean) / (std + self.eps) + self.b_2

# 注意⼒计算
h = x + self.attention.forward(self.attention_norm(x))

# 经过前馈神经⽹络
out = h + self.feed_forward.forward(self.fnn_norm(h))

class EncoderLayer(nn.Module):

  '''Encoder层'''

    def __init__(self, args):
        super().__init__()
        # ⼀个 Layer 中有两个 LayerNorm，分别在 Attention 之前和 MLP 之前
        self.attention_norm = LayerNorm(args.n_embd)
        # Encoder 不需要掩码，传⼊ is_causal=False

        self.attention = MultiHeadAttention(args, is_causal=False)
        self.fnn_norm = LayerNorm(args.n_embd)
        self.feed_forward = MLP(args)

    def forward(self, x):
        # Layer Norm
        norm_x = self.attention_norm(x)
        # ⾃注意⼒
        h = x + self.attention.forward(norm_x, norm_x, norm_x)
        # 经过前馈神经⽹络
        out = h + self.feed_forward.forward(self.fnn_norm(h))
        return out

class Encoder(nn.Module):

    '''Encoder 块'''
    def __init__(self, args):
        super(Encoder, self).__init__() 
        # ⼀个 Encoder 由 N 个 Encoder Layer 组成
        self.layers = nn.ModuleList([EncoderLayer(args) for _ in range(args.n_layer)])
        self.norm = LayerNorm(args.n_embd)

    def forward(self, x):
        "分别通过 N 层 Encoder Layer"
        for layer in self.layers:
            x = layer(x)
        return self.norm(x)



类似的，我们也可以先搭建 Decoder Layer，再将 N 个 Decoder Layer 组装为 Decoder。但是和 Encoder 不同的是，Decoder 由两个注意⼒层和⼀
个前馈神经⽹络组成。第⼀个注意⼒层是⼀个掩码⾃注意⼒层，即使⽤ Mask 的注意⼒计算，保证每⼀个 token 只能使⽤该 token 之前的注意⼒分
数；第⼆个注意⼒层是⼀个多头注意⼒层，该层将使⽤第⼀个注意⼒层的输出作为 query，使⽤ Encoder 的输出作为 key 和 value，来计算注意⼒分
数。最后，再经过前馈神经⽹络：

然后同样的，我们搭建⼀个 Decoder 块：

完成上述 Encoder、Decoder 的搭建，就完成了 Transformer 的核⼼部分，接下来将 Encoder、Decoder 拼接起来再加⼊ Embedding 层就可以搭建
出完整的 Transformer 模型啦。

2.3 搭建⼀个 Transformer  
在前两章，我们分别深⼊剖析了 Attention 机制和 Transformer 的核⼼——Encoder、Decoder 结构，接下来，我们就可以基于上⼀章实现的组件，
搭建起⼀个完整的 Transformer 模型。

2.3.1 Embedding 层  

正如我们在第⼀章所讲过的，在 NLP 任务中，我们往往需要将⾃然语⾔的输⼊转化为机器可以处理的向量。在深度学习中，承担这个任务的组件就是 
Embedding 层。

Embedding 层其实是⼀个存储固定⼤⼩的词典的嵌⼊向量查找表。也就是说，在输⼊神经⽹络之前，我们往往会先让⾃然语⾔输⼊通过分词器 
tokenizer，分词器的作⽤是把⾃然语⾔输⼊切分成 token 并转化成⼀个固定的 index。例如，如果我们将词表⼤⼩设为 4，输⼊“我喜欢你”，那么，分
词器可以将输⼊转化成：

class DecoderLayer(nn.Module):

  '''解码层'''

    def __init__(self, args):
        super().__init__()
        # ⼀个 Layer 中有三个 LayerNorm，分别在 Mask Attention 之前、Self Attention 之前和 MLP 之前
        self.attention_norm_1 = LayerNorm(args.n_embd)
        # Decoder 的第⼀个部分是 Mask Attention，传⼊ is_causal=True

        self.mask_attention = MultiHeadAttention(args, is_causal=True)
        self.attention_norm_2 = LayerNorm(args.n_embd)
        # Decoder 的第⼆个部分是 类似于 Encoder 的 Attention，传⼊ is_causal=False
        self.attention = MultiHeadAttention(args, is_causal=False)
        self.ffn_norm = LayerNorm(args.n_embd)
        # 第三个部分是 MLP

        self.feed_forward = MLP(args)

    def forward(self, x, enc_out):
        # Layer Norm
        norm_x = self.attention_norm_1(x)
        # 掩码⾃注意⼒
        x = x + self.mask_attention.forward(norm_x, norm_x, norm_x)
        # 多头注意⼒
        norm_x = self.attention_norm_2(x)
        h = x + self.attention.forward(norm_x, enc_out, enc_out)
        # 经过前馈神经⽹络
        out = h + self.feed_forward.forward(self.ffn_norm(h))
        return out

class Decoder(nn.Module):

    '''解码器'''

    def __init__(self, args):
        super(Decoder, self).__init__() 
        # ⼀个 Decoder 由 N 个 Decoder Layer 组成
        self.layers = nn.ModuleList([DecoderLayer(args) for _ in range(args.n_layer)])
        self.norm = LayerNorm(args.n_embd)

    def forward(self, x, enc_out):
        "Pass the input (and mask) through each layer in turn."
        for layer in self.layers:
            x = layer(x, enc_out)
        return self.norm(x)



当然，在实际情况下，tokenizer 的⼯作会⽐这更复杂。例如，分词有多种不同的⽅式，可以切分成词、切分成⼦词、切分成字符等，⽽词表⼤⼩则往
往⾼达数万数⼗万。此处我们不赘述 tokenizer 的详细情况，在后⽂会详细介绍⼤模型的 tokenizer 是如何运⾏和训练的。

因此，Embedding 层的输⼊往往是⼀个形状为 （batch_size，seq_len，1）的矩阵，第⼀个维度是⼀次批处理的数量，第⼆个维度是⾃然语⾔序列的
⻓度，第三个维度则是 token 经过 tokenizer 转化成的 index 值。例如，对上述输⼊，Embedding 层的输⼊会是：

其 batch_size 为1，seq_len 为3，转化出来的 index 如上。

⽽ Embedding 内部其实是⼀个可训练的（Vocab_size，embedding_dim）的权重矩阵，词表⾥的每⼀个值，都对应⼀⾏维度为 embedding_dim 的
向量。对于输⼊的值，会对应到这个词向量，然后拼接成（batch_size，seq_len，embedding_dim）的矩阵输出。

上述实现并不复杂，我们可以直接使⽤ torch 中的 Embedding 层：

2.3.2 位置编码  

注意⼒机制可以实现良好的并⾏计算，但同时，其注意⼒计算的⽅式也导致序列中相对位置的丢失。在 RNN、LSTM 中，输⼊序列会沿着语句本身的
顺序被依次递归处理，因此输⼊序列的顺序提供了极其重要的信息，这也和⾃然语⾔的本身特性⾮常吻合。

但从上⽂对注意⼒机制的分析我们可以发现，在注意⼒机制的计算过程中，对于序列中的每⼀个 token，其他各个位置对其来说都是平等的，即“我喜
欢你”和“你喜欢我”在注意⼒机制看来是完全相同的，但⽆疑这是注意⼒机制存在的⼀个巨⼤问题。因此，为使⽤序列顺序信息，保留序列中的相对位置
信息，Transformer 采⽤了位置编码机制，该机制也在之后被多种模型沿⽤。

位置编码，即根据序列中 token 的相对位置对其进⾏编码，再将位置编码加⼊词向量编码中。位置编码的⽅式有很多，Transformer 使⽤了正余弦函
数来进⾏位置编码（绝对位置编码Sinusoidal），其编码⽅式为：

 

上式中，pos 为 token 在句⼦中的位置，2i 和 2i+1 则是指示了 token 是奇数位置还是偶数位置，从上式中我们可以看出对于奇数位置的 token 和偶数
位置的 token，Transformer 采⽤了不同的函数进⾏编码。

我们以⼀个简单的例⼦来说明位置编码的计算过程：假如我们输⼊的是⼀个⻓度为 4 的句⼦"I like to code"，我们可以得到下⾯的词向量矩阵  ，其中
每⼀⾏代表的就是⼀个词向量，  对应的就是“I”的词向量，它的pos就是为0，以此类推，第⼆⾏代表的是“like”的词向量，它
的pos就是1：

 

则经过位置编码后的词向量为：

 

我们可以使⽤如下的代码来获取上述例⼦的位置编码：

input: 我
output: 0

input: 喜欢
output: 1

input：你
output: 2

[[[0],[1],[2]]]

self.tok_embeddings = nn.Embedding(args.vocab_size, args.dim)



这样的位置编码主要有两个好处：

1. 使 PE 能够适应⽐训练集⾥⾯所有句⼦更⻓的句⼦，假设训练集⾥⾯最⻓的句⼦是有 20 个单词，突然来了⼀个⻓度为 21 的句⼦，则使⽤公式计
算的⽅法可以计算出第 21 位的 Embedding。

2. 可以让模型容易地计算出相对位置，对于固定⻓度的间距 k，PE(pos+k) 可以⽤ PE(pos) 计算得到。因为 Sin(A+B) = Sin(A)Cos(B) + Cos(A)Sin(B), 
Cos(A+B) = Cos(A)Cos(B) - Sin(A)Sin(B)。

我们也可以通过严谨的数学推导证明该编码⽅式的优越性。原始的 Transformer Embedding 可以表示为：

 

很明显，这样的函数是不具有不对称性的，也就是⽆法表征相对位置信息。我们想要得到这样⼀种编码⽅式：

 

这⾥加上的 ，  就是位置编码。接下来我们将  在 m,n 两个位置上做泰勒展开：

 

可以看到第1项与位置⽆关，2～5项仅依赖单⼀位置，第6项（f 分别对 m、n 求偏导）与两个位置有关，所以我们希望第六项（  ）表达相对
位置信息，即求⼀个函数 g 使得:

 

我们假设  是⼀个单位矩阵，则：

 

通过将向量 [x,y] 视为复数 x+yi，基于复数的运算法则构建⽅程:

 

再假设存在复数  使得：

 

使⽤复数的指数形式求解这个⽅程，得到⼆维情形下位置编码的解：

 

由于内积满⾜线性叠加性，所以更⾼维的偶数维位置编码，我们可以表示为多个⼆维位置编码的组合：

 

import numpy as np

import matplotlib.pyplot as plt

def PositionEncoding(seq_len, d_model, n=10000):

    P = np.zeros((seq_len, d_model))
    for k in range(seq_len):
        for i in np.arange(int(d_model/2)):
            denominator = np.power(n, 2*i/d_model)
            P[k, 2*i] = np.sin(k/denominator)
            P[k, 2*i+1] = np.cos(k/denominator)
    return P

P = PositionEncoding(seq_len=4, d_model=4, n=100)

print(P)

[[ 0.          1.          0.          1.        ]
 [ 0.84147098  0.54030231  0.09983342  0.99500417]
 [ 0.90929743 -0.41614684  0.19866933  0.98006658]
 [ 0.14112001 -0.9899925   0.29552021  0.95533649]]



再取 （该形式可以使得随着|m−n|的增⼤，⟨pm,pn⟩有着趋于零的趋势，这⼀点可以通过对位置编码做积分来证明，⽽ base 取为 
10000 是实验结果），就得到了上⽂的编码⽅式。

当  不是⼀个单位矩阵时，因为模型的 Embedding 层所形成的 d 维向量之间任意两个维度的相关性⽐较⼩，满⾜⼀定的解耦性，我们可以将其视作
对⻆矩阵，那么使⽤上述编码：

 

通过积化和差：

 

说明该编码仍然可以表示相对位置。

上述编码结果，如图2.6所示：

图2.6 编码结果

 

基于上述原理，我们实现⼀个位置编码层：

2.3.3 ⼀个完整的 Transformer  

class PositionalEncoding(nn.Module):

    '''位置编码模块'''

    def __init__(self, args):
        super(PositionalEncoding, self).__init__()
        # Dropout 层
        # self.dropout = nn.Dropout(p=args.dropout)

        # block size 是序列的最⼤⻓度
        pe = torch.zeros(args.block_size, args.n_embd)
        position = torch.arange(0, args.block_size).unsqueeze(1)
        # 计算 theta

        div_term = torch.exp(
            torch.arange(0, args.n_embd, 2) * -(math.log(10000.0) / args.n_embd)
        )
        # 分别计算 sin、cos 结果
        pe[:, 0::2] = torch.sin(position * div_term)
        pe[:, 1::2] = torch.cos(position * div_term)
        pe = pe.unsqueeze(0)
        self.register_buffer("pe", pe)

    def forward(self, x):
        # 将位置编码加到 Embedding 结果上
        x = x + self.pe[:, : x.size(1)].requires_grad_(False)
        return x



上述所有组件，再按照下图的 Tranfromer 结构拼接起来就是⼀个完整的 Transformer 模型了，如图2.7所示：

图2.7 Transformer 模型结构

但需要注意的是，上图是原论⽂《Attention is all you need》配图，LayerNorm 层放在了 Attention 层后⾯，也就是“Post-Norm”结构，但在其发布
的源代码中，LayerNorm 层是放在 Attention 层前⾯的，也就是“Pre Norm”结构。考虑到⽬前 LLM ⼀般采⽤“Pre-Norm”结构（可以使 loss 更稳
定），本⽂在实现时采⽤“Pre-Norm”结构。

如图，经过 tokenizer 映射后的输出先经过 Embedding 层和 Positional Embedding 层编码，然后进⼊上⼀节讲过的 N 个 Encoder 和 N 个 Decoder
（在 Transformer 原模型中，N 取为6），最后经过⼀个线性层和⼀个 Softmax 层就得到了最终输出。

基于之前所实现过的组件，我们实现完整的 Transformer 模型：

class Transformer(nn.Module):

   '''整体模型'''
    def __init__(self, args):
        super().__init__()
        # 必须输⼊词表⼤⼩和 block size

        assert args.vocab_size is not None
        assert args.block_size is not None
        self.args = args



        self.transformer = nn.ModuleDict(dict(
            wte = nn.Embedding(args.vocab_size, args.n_embd),
            wpe = PositionalEncoding(args),
            drop = nn.Dropout(args.dropout),
            encoder = Encoder(args),
            decoder = Decoder(args),
        ))
        # 最后的线性层，输⼊是 n_embd，输出是词表⼤⼩
        self.lm_head = nn.Linear(args.n_embd, args.vocab_size, bias=False)

        # 初始化所有的权重
        self.apply(self._init_weights)

        # 查看所有参数的数量
        print("number of parameters: %.2fM" % (self.get_num_params()/1e6,))

    '''统计所有参数的数量'''

    def get_num_params(self, non_embedding=False):
        # non_embedding: 是否统计 embedding 的参数
        n_params = sum(p.numel() for p in self.parameters())
        # 如果不统计 embedding 的参数，就减去
        if non_embedding:
            n_params -= self.transformer.wte.weight.numel()
        return n_params

    '''初始化权重'''

    def _init_weights(self, module):
        # 线性层和 Embedding 层初始化为正则分布
        if isinstance(module, nn.Linear):
            torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)
            if module.bias is not None:
                torch.nn.init.zeros_(module.bias)
        elif isinstance(module, nn.Embedding):
            torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)
    
    '''前向计算函数'''

    def forward(self, idx, targets=None):
        # 输⼊为 idx，维度为 (batch size, sequence length, 1)；targets 为⽬标序列，⽤于计算 loss

        device = idx.device
        b, t = idx.size()
        assert t <= self.args.block_size, f"不能计算该序列，该序列⻓度为 {t}, 最⼤序列⻓度只有 {self.args.block_size}"

        # 通过 self.transformer

        # ⾸先将输⼊ idx 通过 Embedding 层，得到维度为 (batch size, sequence length, n_embd)

        print("idx",idx.size())
        # 通过 Embedding 层
        tok_emb = self.transformer.wte(idx)
        print("tok_emb",tok_emb.size())
        # 然后通过位置编码
        pos_emb = self.transformer.wpe(tok_emb) 
        # 再进⾏ Dropout

        x = self.transformer.drop(pos_emb)
        # 然后通过 Encoder

        print("x after wpe:",x.size())
        enc_out = self.transformer.encoder(x)
        print("enc_out:",enc_out.size())
        # 再通过 Decoder

        x = self.transformer.decoder(x, enc_out)
        print("x after decoder:",x.size())

        if targets is not None:
            # 训练阶段，如果我们给了 targets，就计算 loss
            # 先通过最后的 Linear 层，得到维度为 (batch size, sequence length, vocab size)

            logits = self.lm_head(x)
            # 再跟 targets 计算交叉熵
            loss = F.cross_entropy(logits.view(-1, logits.size(-1)), targets.view(-1), ignore_index=-1)
        else:
            # 推理阶段，我们只需要 logits，loss 为 None
            # 取 -1 是只取序列中的最后⼀个作为输出
            logits = self.lm_head(x[:, [-1], :]) # note: using list [-1] to preserve the time dim
            loss = None

        return logits, loss



注意，上述代码除去搭建了整个 Transformer 结构外，我们还额外实现了三个函数：

get_num_params：⽤于统计模型的参数量

_init_weights：⽤于对模型所有参数进⾏随机初始化

forward：前向计算函数

另外，在前向计算函数中，我们对模型使⽤ pytorch 的交叉熵函数来计算损失，对于不同的损失函数，读者可以查阅 Pytorch 的官⽅⽂档，此处就不
再赘述了。

经过上述步骤，我们就可以从零“⼿搓”⼀个完整的、可计算的 Transformer 模型。限于本书主要聚焦在 LLM，在本章，我们就不再详细讲述如何训练 
Transformer 模型了；在后⽂中，我们将类似地从零“⼿搓”⼀个 LLaMA 模型，并⼿把⼿带⼤家训练⼀个属于⾃⼰的 Tiny LLaMA。

参考⽂献

[1] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser, Illia Polosukhin. (2023). Attention 
Is All You Need. arXiv preprint arXiv:1706.03762.

[2] Jay Mody 的⽂章 “An Intuition for Attention”. 来源：https://jaykmody.com/blog/attention-intuition/

https://jaykmody.com/blog/attention-intuition/


第三章 预训练语⾔模型  
3.1 Encoder-only PLM  
在上⼀章，我们详细讲解了给 NLP 领域带来巨⼤变⾰注意⼒机制以及使⽤注意⼒机制搭建的模型 Transformer，
NLP 模型的⾥程碑式转变也就⾃此⽽始。在上⽂对 Transformer 的讲解中我们可以看到，Transformer 结构主要
由 Encoder、Decoder 两个部分组成，两个部分分别具有不⼀样的结构和输⼊输出。

针对 Encoder、Decoder 的特点，引⼊ ELMo 的预训练思路，开始出现不同的、对 Transformer 进⾏优化的思
路。例如，Google 仅选择了 Encoder 层，通过将 Encoder 层进⾏堆叠，再提出不同的预训练任务-掩码语⾔模型
（Masked Language Model，MLM），打造了⼀统⾃然语⾔理解（Natural Language Understanding，NLU）
任务的代表模型——BERT。⽽ OpenAI 则选择了 Decoder 层，使⽤原有的语⾔模型（Language Model，LM）任
务，通过不断增加模型参数和预训练语料，打造了在 NLG（Natural Language Generation，⾃然语⾔⽣成）任务
上优势明显的 GPT 系列模型，也是现今⼤⽕的 LLM 的基座模型。当然，还有⼀种思路是同时保留 Encoder 与 
Decoder，打造预训练的 Transformer 模型，例如由 Google 发布的 T5模型。

在本章中，我们将以 Encoder-Only、Encoder-Decoder、Decoder-Only 的顺序来依次介绍 Transformer 时代的
各个主流预训练模型，分别介绍三种核⼼的模型架构、每种主流模型选择的预训练任务及其独特优势，这也是⽬前
所有主流 LLM 的模型基础。

3.1.1 BERT  

BERT，全名为 Bidirectional Encoder Representations from Transformers，是由 Google 团队在 2018年发布的
预训练语⾔模型。该模型发布于论⽂《BERT: Pre-training of Deep Bidirectional Transformers for Language 
Understanding》，实现了包括 GLUE、MultiNLI 等七个⾃然语⾔处理评测任务的最优性能（State Of The Art，
SOTA），堪称⾥程碑式的成果。⾃ BERT 推出以来，预训练+微调的模式开始成为⾃然语⾔处理任务的主流，不仅 
BERT ⾃身在不断更新迭代提升模型性能，也出现了如 MacBERT、BART 等基于 BERT 进⾏优化提升的模型。可以
说，BERT 是⾃然语⾔处理的⼀个阶段性成果，标志着各种⾃然语⾔处理任务的重⼤进展以及预训练模型的统治地
位建⽴，⼀直到 LLM 的诞⽣，NLP 领域的主导地位才从 BERT 系模型进⾏迁移。即使在 LLM 时代，要深⼊理解 
LLM 与 NLP，BERT 也是⽆法绕过的⼀环。

（1）思想沿承  

BERT 是⼀个统⼀了多种思想的预训练模型。其所沿承的核⼼思想包括：

Transformer 架构。正如我们在上⼀章所介绍的，在 2017年发表的《Attention is All You Need》论⽂提出
了完全使⽤ 注意⼒机制⽽抛弃 RNN、LSTM 结构的 Transformer 模型，带来了新的模型架构。BERT 正沿承
了 Transformer 的思想，在 Transformer 的模型基座上进⾏优化，通过将 Encoder 结构进⾏堆叠，扩⼤模
型参数，打造了在 NLU 任务上独居天分的模型架构；

预训练+微调范式。同样在 2018年，ELMo 的诞⽣标志着预训练+微调范式的诞⽣。ELMo 模型基于双向 
LSTM 架构，在训练数据上基于语⾔模型进⾏预训练，再针对下游任务进⾏微调，表现出了更加优越的性能，
将 NLP 领域导向预训练+微调的研究思路。⽽ BERT 也采⽤了该范式，并通过将模型架构调整为 
Transformer，引⼊更适合⽂本理解、能捕捉深层双向语义关系的预训练任务 MLM，将预训练-微调范式推向
了⾼潮。

接下来，我们将从模型架构、预训练任务以及下游任务微调三个⽅⾯深⼊剖析 BERT，分析 BERT 的核⼼思路及优
势，帮助⼤家理解 BERT 为何能够具备远超之前模型的性能，也从⽽更加深刻地理解 LLM 如何能够战胜 BERT 揭开
新时代的⼤幕。



（2）模型架构——Encoder Only  

BERT 的模型架构是取了 Transformer 的 Encoder 部分堆叠⽽成，其主要结构如图3.1所示：

图3.1 BERT 模型结构

BERT 是针对于 NLU 任务打造的预训练模型，其输⼊⼀般是⽂本序列，⽽输出⼀般是 Label，例如情感分类的积
极、消极 Label。但是，正如 Transformer 是⼀个 Seq2Seq 模型，使⽤ Encoder 堆叠⽽成的 BERT 本质上也是⼀
个 Seq2Seq 模型，只是没有加⼊对特定任务的 Decoder，因此，为适配各种 NLU 任务，在模型的最顶层加⼊了⼀
个分类头 prediction_heads，⽤于将多维度的隐藏状态通过线性层转换到分类维度（例如，如果⼀共有两个类别，
prediction_heads 输出的就是两维向量）。

模型整体既是由 Embedding、Encoder 加上 prediction_heads 组成：



图3.2 BERT 模型简略结构

输⼊的⽂本序列会⾸先通过 tokenizer（分词器） 转化成 input_ids（基本每⼀个模型在 tokenizer 的操作都类似，
可以参考 Transformer 的 tokenizer 机制，后⽂不再赘述），然后进⼊ Embedding 层转化为特定维度的 
hidden_states，再经过 Encoder 块。Encoder 块中是对叠起来的 N 层 Encoder Layer，BERT 有两种规模的模
型，分别是 base 版本（12层 Encoder Layer，768 的隐藏层维度，总参数量 110M），large 版本（24层 
Encoder Layer，1024 的隐藏层维度，总参数量 340M）。通过Encoder 编码之后的最顶层 hidden_states 最后经
过 prediction_heads 就得到了最后的类别概率，经过 Softmax 计算就可以计算出模型预测的类别。

BERT 采⽤ WordPiece 作为分词⽅法。WordPiece 是⼀种基于统计的⼦词切分算法，其核⼼在于将单词拆解
为⼦词（例如，"playing" -> ["play", "##ing"]）。其合并操作的依据是最⼤化语⾔模型的似然度。对于中⽂
等⾮空格分隔的语⾔，通常将单个汉字作为原⼦分词单位（token）处理。

prediction_heads 其实就是线性层加上激活函数，⼀般⽽⾔，最后⼀个线性层的输出维度和任务的类别数相等，如
图3.3所示：



图3.3 prediction_heads 结构

⽽每⼀层 Encoder Layer 都是和 Transformer 中的 Encoder Layer 结构类似的层，如图3.4所示：

图3.4 Encoder Layer 结构

如图3.5所示，已经通过 Embedding 层映射的 hidden_states 进⼊核⼼的 attention 机制，然后通过残差连接的机
制和原输⼊相加，再经过⼀层 Intermediate 层得到最终输出。Intermediate 层是 BERT 的特殊称呼，其实就是⼀
个线性层加上激活函数：



图3.5 Intermediate 结构

注意，BERT 所使⽤的激活函数是 GELU 函数，全名为⾼斯误差线性单元激活函数，这也是⾃ BERT 才开始被普遍
关注的激活函数。GELU 的计算⽅式为：

GELU 的核⼼思路为将随机正则的思想引⼊激活函数，通过输⼊⾃身的概率分布，来决定抛弃还是保留⾃身的神经
元。关于 GELU 的原理与核⼼思路，此处不再赘述，有兴趣的读者可以⾃⾏学习。

BERT 的 注意⼒机制和 Transformer 中 Encoder 的 ⾃注意⼒机制⼏乎完全⼀致，但是 BERT 将相对位置编码融合
在了注意⼒机制中，将相对位置编码同样视为可训练的权重参数，如图3.6所示：

图3.6 BERT 注意⼒机制结构



如图，BERT 的注意⼒计算过程和 Transformer 的唯⼀差异在于，在完成注意⼒分数的计算之后，先通过 Position 
Embedding 层来融⼊相对位置信息。这⾥的 Position Embedding 层，其实就是⼀层线性矩阵。通过可训练的参
数来拟合相对位置，相对⽽⾔⽐ Transformer 使⽤的绝对位置编码 Sinusoidal 能够拟合更丰富的相对位置信息，
但是，这样也增加了不少模型参数，同时完全⽆法处理超过模型训练⻓度的输⼊（例如，对 BERT ⽽⾔能处理的最
⼤上下⽂⻓度是 512 个 token）。

可以看出，BERT 的模型架构既是建⽴在 Transformer 的 Encoder 之上的，这也是为什么说 BERT 沿承了 
Transformer 的思想。

（3）预训练任务——MLM + NSP  

相较于基本沿承 Transformer 的模型架构，BERT 更⼤的创新点在于其提出的两个新的预训练任务上——MLM 和 
NSP（Next Sentence Prediction，下⼀句预测）。预训练-微调范式的核⼼优势在于，通过将预训练和微调分离，
完成⼀次预训练的模型可以仅通过微调应⽤在⼏乎所有下游任务上，只要微调的成本较低，即使预训练成本是之前
的数倍甚⾄数⼗倍，模型仍然有更⼤的应⽤价值。因此，可以进⼀步扩⼤模型参数和预训练数据量，使⽤海量的预
训练语料来让模型拟合潜在语义与底层知识，从⽽让模型通过⻓时间、⼤规模的预训练获得强⼤的语⾔理解和⽣成
能⼒。

因此，预训练数据的核⼼要求即是需要极⼤的数据规模（数亿 token）。毫⽆疑问，通过⼈⼯标注产出的全监督数
据很难达到这个规模。因此，预训练数据⼀定是从⽆监督的语料中获取。这也是为什么传统的预训练任务都是 LM 
的原因——LM 使⽤上⽂预测下⽂的⽅式可以直接应⽤到任何⽂本中，对于任意⽂本，我们只需要将下⽂遮蔽将上
⽂输⼊模型要求其预测就可以实现 LM 训练，因此互联⽹上所有⽂本语料都可以被⽤于预训练。

但是，LM 预训练任务的⼀⼤缺陷在于，其直接拟合从左到右的语义关系，但忽略了双向的语义关系。虽然 
Transformer 中通过位置编码表征了⽂本序列中的位置信息，但这和直接拟合双向语义关系还是有本质区别。例
如，BiLSTM（双向 LSTM 模型）在语义表征上就往往优于 LSTM 模型，就是因为 BiLSTM 通过双向的 LSTM 拟合
了双向语义关系。因此，有没有⼀种预训练任务，能够既利⽤海量⽆监督语料，⼜能够训练模型拟合双向语义关系
的能⼒？

基于这⼀思想，Jacob 等学者提出了 MLM，也就是掩码语⾔模型作为新的预训练任务。相较于模拟⼈类写作的 
LM，MLM 模拟的是“完形填空”。MLM 的思路也很简单，在⼀个⽂本序列中随机遮蔽部分 token，然后将所有未被
遮蔽的 token 输⼊模型，要求模型根据输⼊预测被遮蔽的 token。例如，输⼊和输出可以是：

由于模型可以利⽤被遮蔽的 token 的上⽂和下⽂⼀起理解语义来预测被遮蔽的 token，因此通过这样的任务，模型
可以拟合双向语义，也就能够更好地实现⽂本的理解。同样，MLM 任务⽆需对⽂本进⾏任何⼈为的标注，只需要
对⽂本进⾏随机遮蔽即可，因此也可以利⽤互联⽹所有⽂本语料实现预训练。例如，BERT 的预训练就使⽤了⾜⾜ 
3300M 单词的语料。

不过，MLM 也存在其固有缺陷。LM 任务模拟了⼈⾃然创作的过程，其训练和下游任务是完全⼀致的，也就是说，
训练时是根据上⽂预测下⽂，下游任务微调和推理时也同样如此。但是 MLM 不同，在下游任务微调和推理时，其
实是不存在我们⼈⼯加⼊的 <MASK>  的，我们会直接通过原⽂本得到对应的隐藏状态再根据下游任务进⼊分类器或
其他组件。预训练和微调的不⼀致，会极⼤程度影响模型在下游任务微调的性能。针对这⼀问题，作者对 MLM 的
策略进⾏了改进。

输⼊：I <MASK> you because you are <MASK>
输出：<MASK> - love; <MASK> - wonderful



在具体进⾏ MLM 训练时，会随机选择训练语料中 15% 的 token ⽤于遮蔽。但是这 15% 的 token 并⾮全部被遮蔽
为 <MASK>，⽽是有 80% 的概率被遮蔽，10% 的概率被替换为任意⼀个 token，还有 10% 的概率保持不变。其中 
10% 保持不变就是为了消除预训练和微调的不⼀致，⽽ 10% 的随机替换核⼼意义在于迫使模型保持对上下⽂信息
的学习。因为如果全部遮蔽的话，模型仅需要处理被遮蔽的位置，从⽽仅学习要预测的 token ⽽丢失了对上下⽂的
学习。通过引⼊部分随机 token，模型⽆法确定需要预测的 token，从⽽被迫保持每⼀个 token 的上下⽂表征分
布，从⽽具备了对句⼦的特征表示能⼒。且由于随机 token 的概率很低，其并不会影响模型实质的语⾔理解能⼒。

除去 MLM，BERT 还提出了另外⼀个预训练任务——NSP，即下⼀个句⼦预测。NSP 的核⼼思想是针对句级的 
NLU 任务，例如问答匹配、⾃然语⾔推理等。问答匹配是指，输⼊⼀个问题和若⼲个回答，要求模型找出问题的真
正回答；⾃然语⾔推理是指，输⼊⼀个前提和⼀个推理，判断推理是否是符合前提的。这样的任务都需要模型在句
级去拟合关系，判断两个句⼦之间的关系，⽽不仅是 MLM 在 token 级拟合的语义关系。因此，BERT 提出了 NSP 
任务来训练模型在句级的语义关系拟合。

NSP 任务的核⼼思路是要求模型判断⼀个句对的两个句⼦是否是连续的上下⽂。例如，输⼊和输⼊可以是：

通过要求模型判断句对关系，从⽽迫使模型拟合句⼦之间的关系，来适配句级的 NLU 任务。同样，由于 NSP 的正
样本可以从⽆监督语料中随机抽取任意连续的句⼦，⽽负样本可以对句⼦打乱后随机抽取（只需要保证不要抽取到
原本就连续的句⼦就⾏），因此也可以具有⼏乎⽆限量的训练数据。

在具体预训练时，BERT 使⽤了 800M 的 BooksCorpus 语料和 2500M 的英⽂维基百科语料，90% 的数据使⽤ 
128 的上下⽂⻓度训练，剩余 10% 的数据使⽤ 512 作为上下⽂⻓度进⾏预训练，总共约训练了 3.3B token。其训
练的超参数也是值得关注的，BERT 的训练语料共有 13GB ⼤⼩，其在 256 的 batch size 上训练了 1M 步（40 个 
Epoch）。⽽相较⽽⾔，LLM ⼀般都只会训练⼀个 Epoch，且使⽤远⼤于 256 的 batch size。

可以看到，相⽐于传统的⾮预训练模型，其训练的数据量有指数级增⻓。当然，更海量的训练数据需要更⼤成本的
算⼒，BERT 的 Base 版本和 Large 版本分别使⽤了 16块 TPU 和 64块 TPU 训练了 4天才完成。

（4）下游任务微调  

作为 NLP 领域⾥程碑式的成果，BERT 的⼀个重⼤意义就是正式确⽴了预训练-微调的两阶段思想，即在海量⽆监
督语料上进⾏预训练来获得通⽤的⽂本理解与⽣成能⼒，再在对应的下游任务上进⾏微调。该种思想的⼀个重点在
于，预训练得到的强⼤能⼒能否通过低成本的微调快速迁移到对应的下游任务上。

针对这⼀点，BERT 设计了更通⽤的输⼊和输出层来适配多任务下的迁移学习。对每⼀个输⼊的⽂本序列，BERT 会
在其⾸部加⼊⼀个特殊 token <CLS>。在后续编码中，该 token 代表的即是整句的状态，也就是句级的语义表
征。在进⾏ NSP 预训练时，就使⽤了该 token 对应的特征向量来作为最后分类器的输⼊。

输⼊：
    Sentence A：I love you.
    Sentence B: Because you are wonderful.
输出：
    1（是连续上下⽂）

输⼊：
    Sentence A：I love you.
    Sentence B: Because today's dinner is so nice.
输出：
    0（不是连续上下⽂）



在完成预训练后，针对每⼀个下游任务，只需要使⽤⼀定量的全监督⼈⼯标注数据，对预训练的 BERT 在该任务上
进⾏微调即可。所谓微调，其实和训练时更新模型参数的策略⼀致，只不过在特定的任务、更少的训练数据、更⼩
的 batch_size 上进⾏训练，更新参数的幅度更⼩。对于绝⼤部分下游任务，都可以直接使⽤ BERT 的输出。例如，
对于⽂本分类任务，可以直接修改模型结构中的 prediction_heads 最后的分类头即可。对于序列标注等任务，可
以集成 BERT 多层的隐含层向量再输出最后的标注结果。对于⽂本⽣成任务，也同样可以取 Encoder 的输出直接解
码得到最终⽣成结果。因此，BERT 可以⾮常⾼效地应⽤于多种 NLP 任务。

BERT ⼀经提出，直接在 NLP 11个赛道上取得 SOTA 效果，成为 NLU ⽅向上当之⽆愧的霸主，后续若⼲在 NLU 任
务上取得更好效果的模型都是在 BERT 基础上改进得到的。直⾄ LLM 时代，BERT 也仍然能在很多标注数据丰富的 
NLU 任务上达到最优效果，事实上，对于某些特定、训练数据丰富且强调⾼吞吐的任务，BERT ⽐ LLM 更具有可
⽤性。

3.1.2 RoBERTa  

BERT 作为 NLP 划时代的杰作，同时在多个榜单上取得 SOTA 效果，也带动整个 NLP 领域向预训练模型⽅向迁
移。以 BERT 为基础，在多个⽅向上进⾏优化，还涌现了⼀⼤批效果优异的 Encoder-Only 预训练模型。它们⼤都
有和 BERT 类似或完全⼀致的模型结构，在训练数据、预训练任务、训练参数等⽅⾯上进⾏了优化，以取得能⼒更
强⼤、在下游任务上表现更亮眼的预训练模型。其中之⼀即是同样由 Facebook 发布的 RoBERTa。

前⾯我们说过，预训练-微调的⼀个核⼼优势在于可以使⽤远⼤于之前训练数据的海量⽆监督语料进⾏预训练。因
为在传统的深度学习范式中，对每⼀个任务，我们需要从零训练⼀个模型，那么就⽆法使⽤太⼤的模型参数，否则
需要极⼤规模的有监督数据才能让模型较好地拟合，成本太⼤。但在预训练-微调范式，我们在预训练阶段可以使
⽤尽可能⼤量的训练数据，只需要⼀次预训练好的模型，后续在每⼀个下游任务上通过少量有监督数据微调即可。
⽽ BERT 就使⽤了 13GB（3.3B token）的数据进⾏预训练，这相较于传统 NLP 来说是⼀个极其巨⼤的数据规模
了。

但是，13GB 的预训练数据是否让 BERT 达到了充分的拟合呢？如果我们使⽤更多预训练语料，是否可以进⼀步增
强模型性能？更多的，BERT 所选⽤的预训练任务、训练超参数是否是最优的？RoBERTa 应运⽽⽣。

（1）优化⼀：去掉 NSP 预训练任务  

RoBERTa 的模型架构与 BERT 完全⼀致，也就是使⽤了 BERT-large（24层 Encoder Layer，1024 的隐藏层维度，
总参数量 340M）的模型参数。在预训练任务上，有学者质疑 NSP 任务并不能提⾼模型性能，因为其太过简单，加
⼊到预训练中并不能使下游任务微调时明显受益，甚⾄会带来负⾯效果。RoBERTa 设置了四个实验组：

实验结果证明，后两组显著优于前两组，且单⽂档的 MLM 组在下游任务上微调时性能最佳。因此，RoBERTa 在预
训练中去掉了 NSP，只使⽤ MLM 任务。

同时，RoBERTa 对 MLM 任务本身也做出了改进。在 BERT 中，Mask 的操作是在数据处理的阶段完成的，因此后
期预训练时同⼀个 sample 待预测的 <MASK>  总是⼀致的。由于 BERT 共训练了 40 个 Epoch，为使模型的训练数
据更加⼴泛，BERT 将数据进⾏了四次随机 Mask，也就是每 10个 Epoch 模型训练的数据是完全⼀致的。⽽ 
RoBERTa 将 Mask 操作放到了训练阶段，也就是动态遮蔽策略，从⽽让每⼀个 Epoch 的训练数据 Mask 的位置都
不⼀致。在实验中，动态遮蔽仅有很微弱的优势优于静态遮蔽，但由于动态遮蔽更⾼效、易于实现，后续 MLM 任

1. 段落构建的 MLM + NSP：BERT 原始预训练任务，输⼊是⼀对⽚段，每个⽚段包括多个句⼦，来构造 NSP 任务；
2. ⽂档对构建的 MLM + NSP：⼀个输⼊构建⼀对句⼦，通过增⼤ batch 来和原始输⼊达到 token 等同；
3. 跨越⽂档的 MLM：去掉 NSP 任务，⼀个输⼊为从⼀个或多个⽂档中连续采样的完整句⼦，为使输⼊达到最⼤⻓度
（512），可能⼀个输⼊会包括多个⽂档；
4. 单⽂档的 MLM：去掉 NSP 任务，且限制⼀个输⼊只能从⼀个⽂档中采样，同样通过增⼤ batch 来和原始输⼊达到 
token 等同



务基本都使⽤了动态遮蔽。

（2）优化⼆：更⼤规模的预训练数据和预训练步⻓  

RoBERTa 使⽤了更⼤量的⽆监督语料进⾏预训练，除去 BERT 所使⽤的 BookCorpus 和英⽂维基百科外，还使⽤
了 CC-NEWS（CommonCrawl 数据集新闻领域的英⽂部分）、OPENWEBTEXT（英⽂⽹⻚）、STORIES
（CommonCrawl 数据集故事⻛格⼦集），共计 160GB 的数据，⼗倍于 BERT。

同时，RoBERTa 认为更⼤的 batch size 既可以提⾼优化速度，也可以提⾼任务结束性能。因此，实验在 8K 的 
batch size（对⽐ BERT 的 batch size 为 256）下训练 31K Step，也就是总训练 token 数和 BERT ⼀样是 3.3B 
时，模型性能更好，从⽽证明了⼤ batch size 的意义。在此基础上，RoBERTa ⼀共训练了 500K Step（约合 66个 
Epoch）。同时，RoBERTa 不再采⽤ BERT 在 256 ⻓度上进⾏⼤部分训练再在 512 ⻓度上完成训练的策略，⽽是
全部在 512 ⻓度上进⾏训练。

当然，更⼤的预训练数据、更⻓的序列⻓度和更多的训练 Epoch，需要预训练阶段更多的算⼒资源。训练⼀个 
RoBERTa，Meta 使⽤了 1024 块 V100（32GB 显存）训练了⼀天。

（3）优化三：更⼤的 bpe 词表  

与 BERT 使⽤的 WordPiece 算法不同，RoBERTa 使⽤了 BPE 作为 Tokenizer 的编码策略。BPE，即 Byte Pair 
Encoding，字节对编码，是指以⼦词对作为分词的单位。例如，对“Hello World”这句话，可能会切分为“Hel，lo，
Wor，ld”四个⼦词对。⽽对于以字为基本单位的中⽂，⼀般会按照字节编码进⾏切分。例如，在 UTF-8 编码中，
“我”会被编码为“E68891”，那么在 BPE 中可能就会切分成“E68”，“891”两个字词对。

⼀般来说，BPE 编码的词典越⼤，编码效果越好。当然，由于 Embedding 层就是把 token 从词典空间映射到隐藏
空间（也就是说 Embedding 的形状为 (vocab_size, hidden_size)，越⼤的词表也会带来模型参数的增加。

BERT 原始的 BPE 词表⼤⼩为 30K，RoBERTa 选择了 50K ⼤⼩的词表来优化模型的编码能⼒。

通过上述三个部分的优化，RoBERTa 成功地在 BERT 架构的基础上刷新了多个下游任务的 SOTA，也⼀度成为 
BERT 系模型最热⻔的预训练模型。同时，RoBERTa 的成功也证明了更⼤的预训练数据、更⼤的预训练步⻓的重要
意义，这也是 LLM 诞⽣的基础之⼀。

3.1.3 ALBERT  

在 BERT 的基础上，RoBERTa 进⼀步探究了更⼤规模预训练的作⽤。同样是基于 BERT 架构进⾏优化的 ALBERT 模
型，则从是否能够减⼩模型参数保持模型能⼒的⻆度展开了探究。通过对模型结构进⾏优化并对 NSP 预训练任务
进⾏改进，ALBERT 成功地以更⼩规模的参数实现了超越 BERT 的能⼒。虽然 ALBERT 所提出的⼀些改进思想并没
有在后续研究中被⼴泛采⽤，但其降低模型参数的⽅法及提出的新预训练任务 SOP 仍然对 NLP 领域提供了重要的
参考意义。

（1）优化⼀：将 Embedding 参数进⾏分解  

BERT 等预训练模型具有远超传统神经⽹络的参数量，如前所述，BERT-large 具有 24层 Encoder Layer，1024 的
隐藏层维度，总共参数量达 340M。⽽这其中，Embedding 层的参数矩阵维度为 ，此处的 V 为词表⼤⼩ 
30K，H 即为隐藏层⼤⼩ 1024，也就是 Embedding 层参数达到了 30M。⽽这样的设置还会带来⼀个更⼤的问
题，即 Google 探索尝试搭建更宽（也就是隐藏层维度更⼤）的模型时发现，隐藏层维度的增加会带来 
Embedding 层参数的巨⼤上升，如果把隐藏层维度增加到 2048，Embedding 层参数就会膨胀到 61M，这⽆疑是
极⼤增加了模型的计算开销。



⽽从另⼀个⻆度看，Embedding 层输出的向量是我们对⽂本 token 的稠密向量表示，从 Word2Vec 的成功经验来
看，这种词向量并不需要很⼤的维度，Word2Vec 仅使⽤了 100维⼤⼩就取得了很好的效果。因此，Embedding 
层的输出也许不需要和隐藏层⼤⼩⼀致。

因此，ALBERT 对 Embedding 层的参数矩阵进⾏了分解，让 Embedding 层的输出维度和隐藏层维度解绑，也就
是在 Embedding 层的后⾯加⼊⼀个线性矩阵进⾏维度变换。ALBERT 设置了 Embedding 层的输出为 128，因此
在 Embedding 层后⾯加⼊了⼀个  的线性矩阵来将 Embedding 层的输出再升维到隐藏层⼤⼩。也就
是说，Embedding 层的参数从  降低到了 ，当 E 的⼤⼩远⼩于 H 时，该⽅法对 
Embedding 层参数的优化就会很明显。

（2）优化⼆：跨层进⾏参数共享  

通过对 BERT 的参数进⾏分析，ALBERT 发现各个 Encoder 层的参数出现⾼度⼀致的情况。由于 24个 Encoder 层
带来了巨⼤的模型参数，因此，ALBERT 提出，可以让各个 Encoder 层共享模型参数，来减少模型的参数量。

在具体实现上，其实就是 ALBERT 仅初始化了⼀个 Encoder 层。在计算过程中，仍然会进⾏ 24次计算，但是每⼀
次计算都是经过这⼀个 Encoder 层。因此，虽然是 24个 Encoder 计算的模型，但只有⼀层 Encoder 参数，从⽽
⼤⼤降低了模型参数量。在这样的情况下，就可以极⼤程度地扩⼤隐藏层维度，实现⼀个更宽但参数量更⼩的模
型。ALBERT 通过实验证明，相较于 334M 的 BERT，同样是 24层 Encoder 但将隐藏层维度设为 2048 的 ALBERT
（xlarge 版本）仅有 59M 的参数量，但在具体效果上还要更优于 BERT。

但是，上述优化虽然极⼤程度减⼩了模型参数量并且还提⾼了模型效果，却也存在着明显的不⾜。虽然 ALBERT 的
参数量远⼩于 BERT，但训练效率却只略微优于 BERT，因为在模型的设置中，虽然各层共享权重，但计算时仍然要
通过 24次 Encoder Layer 的计算，也就是说训练和推理时的速度相较 BERT 还会更慢。这也是 ALBERT 最终没能
取代 BERT 的⼀个重要原因。

（3）优化三：提出 SOP 预训练任务  

类似于 RoBERTa，ALBERT 也同样认为 NSP 任务过于简单，在预训练中⽆法对模型效果的提升带来显著影响。但
是不同于 RoBERTa 选择直接去掉 NSP，ALBERT 选择改进 NSP，增加其难度，来优化模型的预训练。

在传统的 NSP 任务中，正例是由两个连续句⼦组成的句对，⽽负例则是从任意两篇⽂档中抽取出的句对，模型可
以较容易地判断正负例，并不能很好地学习深度语义。⽽ SOP 任务提出的改进是，正例同样由两个连续句⼦组
成，但负例是将这两个的顺序反过来。也就是说，模型不仅要拟合两个句⼦之间的关系，更要学习其顺序关系，这
样就⼤⼤提升了预训练的难度。例如，相较于我们在上⽂中提出的 NSP 任务的示例，SOP 任务的示例形如：

ALBERT 通过实验证明，SOP 预训练任务对模型效果有显著提升。使⽤ MLM + SOP 预训练的模型效果优于仅使⽤ 
MLM 预训练的模型更优于使⽤ MLM + NSP 预训练的模型。

输⼊：
    Sentence A：I love you.
    Sentence B: Because you are wonderful.
输出：
    1（正样本）

输⼊：
    Sentence A：Because you are wonderful.
    Sentence B: I love you.
输出：
    0（负样本）



通过上述三点优化，ALBERT 成功地以更⼩的参数实现了更强的性能，虽然由于其架构带来的训练、推理效率降低
限制了模型的进⼀步发展，但打造更宽的模型这⼀思路仍然为众多更强⼤的模型提供了参考价值。

作为预训练时代的 NLP 王者，BERT 及 BERT 系模型在多个 NLP 任务上扮演了极其重要的⻆⾊。除去上⽂介绍过
的 RoBERTa、ALBERT 外，还有许多从其他更⾼⻆度对 BERT 进⾏优化的后起之秀，包括进⼀步改进了预训练任务
的 ERNIE、对 BERT 进⾏蒸馏的⼩模型 DistilBERT、主打多语⾔任务的 XLM 等，本⽂就不再⼀⼀赘述。以 BERT 为
代表的 Encoder-Only 架构并⾮ Transformer 的唯⼀变种，接下来，我们将介绍 Transformer 的另⼀种主流架
构，与原始 Transformer 更相似、以 T5 为代表的 Encoder-Decoder 架构。

3.2 Encoder-Decoder PLM  
在上⼀节，我们学习了 Encoder-Only 结构的模型，主要介绍了 BERT 的模型架构、预训练任务和下游任务微调。
BERT 是⼀个基于 Transformer 的 Encoder-Only 模型，通过预训练任务 MLM 和 NSP 来学习⽂本的双向语义关
系，从⽽在下游任务中取得了优异的性能。但是，BERT 也存在⼀些问题，例如 MLM 任务和下游任务微调的不⼀
致性，以及⽆法处理超过模型训练⻓度的输⼊等问题。为了解决这些问题，研究者们提出了 Encoder-Decoder 模
型，通过引⼊ Decoder 部分来解决这些问题，同时也为 NLP 领域带来了新的思路和⽅法。

在本节中，我们将学习 Encoder-Decoder 结构的模型，主要介绍 T5 的模型架构和预训练任务，以及 T5 模型⾸次
提出的 NLP ⼤⼀统思想。

3.2.1 T5  

T5（Text-To-Text Transfer Transformer）是由 Google 提出的⼀种预训练语⾔模型，通过将所有 NLP 任务统⼀
表示为⽂本到⽂本的转换问题，⼤⼤简化了模型设计和任务处理。T5 基于 Transformer 架构，包含编码器和解码
器两个部分，使⽤⾃注意⼒机制和多头注意⼒捕捉全局依赖关系，利⽤相对位置编码处理⻓序列中的位置信息，并
在每层中包含前馈神经⽹络进⼀步处理特征。

T5 的⼤⼀统思想将不同的 NLP 任务如⽂本分类、问答、翻译等统⼀表示为输⼊⽂本到输出⽂本的转换，这种⽅法
简化了模型设计、参数共享和训练过程，提⾼了模型的泛化能⼒和效率。通过这种统⼀处理⽅式，T5不仅减少了任
务特定的模型调试⼯作，还能够使⽤相同的数据处理和训练框架，极⼤地提升了多任务学习的性能和应⽤的便捷
性。接下来我们将会从模型结构、预训练任务和⼤⼀统思想三个⽅⾯来介绍 T5 模型。

（1）模型结构：Encoder-Decoder  

BERT 采⽤了 Encoder-Only 结构，只包含编码器部分；⽽ GPT 采⽤了 Decoder-Only 结构，只包含解码器部分。
T5 则采⽤了 Encoder-Decoder 结构，其中编码器和解码器都是基于 Transformer 架构设计。编码器⽤于处理输
⼊⽂本，解码器⽤于⽣成输出⽂本。编码器和解码器之间通过注意⼒机制进⾏信息交互，从⽽实现输⼊⽂本到输出
⽂本的转换。其主要结构如图3.7所示：



图3.7 T5 模型详细结构

如图3.8所示，从整体来看 T5 的模型结构包括 Tokenizer 部分和 Transformer 部分。Tokenizer 部分主要负责将输
⼊⽂本转换为模型可接受的输⼊格式，包括分词、编码等操作。Transformer 部分⼜分为 EncoderLayers 和 
DecoderLayers 两部分，他们分别由⼀个个⼩的 Block组成，每个 Block 包含了多头注意⼒机制、前馈神经⽹络和 
Norm 层。Block 的设计可以使模型更加灵活，像乐⾼⼀样可以根据任务的复杂程度和数据集的⼤⼩来调整 Block 
的数量和层数。



图3.8 T5 模型整体结构

T5 模型的 Encoder 和 Decoder 部分都是基于 Transformer 架构设计的，主要包括 Self-Attention 和前馈神经⽹
络两种结构。Self-Attention ⽤于捕捉输⼊序列中的全局依赖关系，前馈神经⽹络⽤于处理特征的⾮线性变换。

和 Encoder 不⼀样的是，在 Decoder 中还包含了 Encoder-Decoder Attention 结构，⽤于捕捉输⼊和输出序列之
间的依赖关系。这两种 Attention 结构⼏乎完全⼀致，只有在位置编码和 Mask 机制上有所不同。如图3.9所示，
Encoder 和 Decoder 的结构如下：



图3.9 Encoder 和 Decoder

T5 的 Self-Attention 机制和 BERT 的 Attention 机制是⼀样的，都是基于 Self-Attention 机制设计的。Self-
Attention 机制是⼀种全局依赖关系建模⽅法，通过计算 Query、Key 和 Value 之间的相似度来捕捉输⼊序列中的
全局依赖关系。Encoder-Decoder Attention 仅仅在位置编码和 Mask 机制上有所不同，主要是为了区分输⼊和输
出序列。如图3.10所示，Self-Attention 结构如下：



图3.10 Self-Attention 结构

与原始 Transformer 模型不同，T5 模型的LayerNorm 采⽤了 RMSNorm，通过计算每个神经元的均⽅根（Root 
Mean Square）来归⼀化每个隐藏层的激活值。RMSNorm 的参数设置与Layer Normalization 相⽐更简单，只有
⼀个可学参数，可以更好地适应不同的任务和数据集。RMSNorm函数可以⽤以下数学公式表示：

 

其中：

 是输⼊向量的第  个元素

 是可学习的缩放参数

 是输⼊向量的维度数量

 是⼀个⼩常数，⽤于数值稳定性（以避免除以零的情况）

这种归⼀化有助于通过确保权重的规模不会变得过⼤或过⼩来稳定学习过程，这在具有许多层的深度学习模型中特
别有⽤。

（2）预训练任务  



T5 模型的预训练任务是⼀个关键的组成部分，它能使模型能够学习到丰富的语⾔表示，语⾔表示能⼒可以在后续
的微调过程中被迁移到各种下游任务。训练所使⽤的数据集是⼀个⼤规模的⽂本数据集，包含了各种各样的⽂本数
据，如维基百科、新闻、书籍等等。对数据经过细致的处理后，⽣成了⽤于训练的750GB 的数据集 C4，且已在 
TensorflowData 中开源。

我们可以简单概括⼀下 T5 的预训练任务，主要包括以下⼏个部分：

预训练任务: T5模型的预训练任务是 MLM，也称为BERT-style⽬标。具体来说，就是在输⼊⽂本中随机遮蔽
15%的token，然后让模型预测这些被遮蔽的token。这个过程不需要标签，可以在⼤量未标注的⽂本上进
⾏。

输⼊格式: 预训练时，T5将输⼊⽂本转换为"⽂本到⽂本"的格式。对于⼀个给定的⽂本序列，随机选择⼀些
token进⾏遮蔽，并⽤特殊的占位符(token)替换。然后将被遮蔽的token序列作为模型的输出⽬标。

预训练数据集: T5 使⽤了⾃⼰创建的⼤规模数据集"Colossal Clean Crawled Corpus"(C4)，该数据集从
Common Crawl中提取了⼤量⼲净的英语⽂本。C4数据集经过了⼀定的清洗，去除了⽆意义的⽂本、重复⽂
本等。

多任务预训练: T5 还尝试了将多个任务混合在⼀起进⾏预训练，⽽不仅仅是单独的MLM任务。这有助于模型
学习更通⽤的语⾔表示。

预训练到微调的转换: 预训练完成后，T5模型会在下游任务上进⾏微调。微调时，模型在任务特定的数据集上
进⾏训练，并根据任务调整解码策略。

通过⼤规模预训练，T5模型能够学习到丰富的语⾔知识，并获得强⼤的语⾔表示能⼒，在多个NLP任务上取得了优
异的性能，预训练是T5成功的关键因素之⼀。

（3）⼤⼀统思想  

T5模型的⼀个核⼼理念是“⼤⼀统思想”，即所有的 NLP 任务都可以统⼀为⽂本到⽂本的任务，这⼀思想在⾃然语⾔
处理领域具有深远的影响。其设计理念是将所有不同类型的NLP任务（如⽂本分类、翻译、⽂本⽣成、问答等）转
换为⼀个统⼀的格式：输⼊和输出都是纯⽂本。

例如：

对于⽂本分类任务，输⼊可以是“classify: 这是⼀个很好的产品”，输出是“正⾯”；

对于翻译任务，输⼊可以是“translate English to French: How are you?”, 输出是“Comment ça va?”。

T5通过⼤规模的⽂本数据进⾏预训练，然后在具体任务上进⾏微调。这⼀过程与BERT、GPT等模型类似，但T5将
预训练和微调阶段的任务统⼀为⽂本到⽂本的形式，使其在各种任务上的适应性更强。

我们可以通过图3.11，更加直观地理解 T5 的⼤⼀统思想：



图3.11 T5 的⼤⼀统思想

对于不同的NLP任务，每次输⼊前都会加上⼀个任务描述前缀，明确指定当前任务的类型。这不仅帮助模型在预训
练阶段学习到不同任务之间的通⽤特征，也便于在微调阶段迅速适应具体任务。例如，任务前缀可以是
“summarize: ”⽤于摘要任务，或“translate English to German: ”⽤于翻译任务。

T5的⼤⼀统思想通过将所有NLP任务统⼀为⽂本到⽂本的形式，简化了任务处理流程，增强了模型的通⽤性和适应
性。这⼀思想不仅推动了⾃然语⾔处理技术的发展，也为实际应⽤提供了更为便捷和⾼效的解决⽅案。

3.3 Decoder-Only PLM  
在前两节中，我们分别讲解了由 Transformer 发展⽽来的两种模型架构——以 BERT 为代表的 Encoder-Only 模型
和以 T5 为代表的 Encoder-Decoder 模型。那么，很⾃然可以想⻅，除了上述两种架构，还可以有⼀种模型架构
——Decoder-Only，即只使⽤ Decoder 堆叠⽽成的模型。

事实上，Decoder-Only 就是⽬前⼤⽕的 LLM 的基础架构，⽬前所有的 LLM 基本都是 Decoder-Only 模型
（RWKV、Mamba 等⾮ Transformer 架构除外）。⽽引发 LLM 热潮的 ChatGPT，正是 Decoder-Only 系列的代
表模型 GPT 系列模型的⼤成之作。⽽⽬前作为开源 LLM 基本架构的 LLaMA 模型，也正是在 GPT 的模型架构基础
上优化发展⽽来。因此，在本节中，我们不但会详细分析 Decoder-Only 代表模型 GPT 的原理、架构和特点，还
会深⼊到⽬前的主流开源 LLM，分析它们的结构、特点，结合之前对 Transformer 系列其他模型的分析，帮助⼤
家深⼊理解当下被寄予厚望、被认为是 AGI 必经之路的 LLM 是如何⼀步步从传统 PLM 中发展⽽来的。

⾸先，让我们学习打开 LLM 世界⼤⻔的代表模型——由 OpenAI 发布的 GPT。

3.3.1 GPT  

GPT，即 Generative Pre-Training Language Model，是由 OpenAI 团队于 2018年发布的预训练语⾔模型。虽然
学界普遍认可 BERT 作为预训练语⾔模型时代的代表，但⾸先明确提出预训练-微调思想的模型其实是 GPT。GPT 
提出了通⽤预训练的概念，也就是在海量⽆监督语料上预训练，进⽽在每个特定任务上进⾏微调，从⽽实现这些任
务的巨⼤收益。虽然在发布之初，由于性能略输于不久后发布的 BERT，没能取得轰动性成果，也没能让 GPT 所使
⽤的 Decoder-Only 架构成为学界研究的主流，但 OpenAI 团队坚定地选择了不断扩⼤预训练数据、增加模型参
数，在 GPT 架构上不断优化，最终在 2020年发布的 GPT-3 成就了 LLM 时代的基础，并以 GPT-3 为基座模型的 
ChatGPT 成功打开新时代的⼤⻔，成为 LLM 时代的最强竞争者也是⽬前的最⼤赢家。

本节将以 GPT 为例，分别从模型架构、预训练任务、GPT 系列模型的发展历程等三个⽅⾯深⼊分析 GPT 及其代表
的 Decoder-Only 模型，并进⼀步引出当前的主流 LLM 架构——LLaMA。

（1） 模型架构——Decoder Only  



图3.12 GPT 模型结构

如图3.12可以看到，GPT 的整体结构和 BERT 是有⼀些类似的，只是相较于 BERT 的 Encoder，选择使⽤了 
Decoder 来进⾏模型结构的堆叠。由于 Decoder-Only 结构也天⽣适⽤于⽂本⽣成任务，所以相较于更贴合 NLU 
任务设计的 BERT，GPT 和 T5 的模型设计更契合于 NLG 任务和 Seq2Seq 任务。同样，对于⼀个⾃然语⾔⽂本的
输⼊，先通过 tokenizer 进⾏分词并转化为对应词典序号的 input_ids。

输⼊的 input_ids ⾸先通过 Embedding 层，再经过 Positional Embedding 进⾏位置编码。不同于 BERT 选择了可
训练的全连接层作为位置编码，GPT 沿⽤了 Transformer 的经典 Sinusoidal 位置编码，即通过三⻆函数进⾏绝对
位置编码，此处就不再赘述，感兴趣的读者可以参考第⼆章 Transformer 模型细节的解析。

通过 Embedding 层和 Positional Embedding 层编码成 hidden_states 之后，就可以进⼊到解码器
（Decoder），第⼀代 GPT 模型和原始 Transformer 模型类似，选择了 12层解码器层，但是在解码器层的内部，
相较于 Transformer 原始 Decoder 层的双注意⼒层设计，GPT 的 Decoder 层反⽽更像 Encoder 层⼀点。由于不
再有 Encoder 的编码输⼊，Decoder 层仅保留了⼀个带掩码的注意⼒层，并且将 LayerNorm 层从 Transformer 
的注意⼒层之后提到了注意⼒层之前。hidden_states 输⼊ Decoder 层之后，会先进⾏ LayerNorm，再进⾏掩码
注意⼒计算，然后经过残差连接和再⼀次 LayerNorm 进⼊到 MLP 中并得到最后输出。

由于不存在 Encoder 的编码结果，Decoder 层中的掩码注意⼒也是⾃注意⼒计算。也就是对⼀个输⼊的 
hidden_states，会通过三个参数矩阵来⽣成 query、key 和 value，⽽不再是像 Transformer 中的 Decoder 那样
由 Encoder 输出作为 key 和 value。后续的注意⼒计算过程则和 BERT 类似，只是在计算得到注意⼒权重之后，通
过掩码矩阵来遮蔽了未来 token 的注意⼒权重，从⽽限制每⼀个 token 只能关注到它之前 token 的注意⼒，来实
现掩码⾃注意⼒的计算。



模型 Decoder Layer Hidden_size 注意⼒头数 注意⼒维度 总参数量 预训练语料

GPT-1 12 3072 12 768 0.12B 5GB

GPT-2 48 6400 25 1600 1.5B 40GB

GPT-3 96 49152 96 12288 175B 570GB

另外⼀个结构上的区别在于，GPT 的 MLP 层没有选择线性矩阵来进⾏特征提取，⽽是选择了两个⼀维卷积核来提
取，不过，从效果上说这两者是没有太⼤区别的。通过 N 个 Decoder 层后的 hidden_states 最后经过线性矩阵映
射到词表维度，就可以转化成⾃然语⾔的 token，从⽽⽣成我们的⽬标序列。

（2）预训练任务——CLM  

Decoder-Only 的模型结构往往更适合于⽂本⽣成任务，因此，Decoder-Only 模型往往选择了最传统也最直接的
预训练任务——因果语⾔模型，Casual Language Model，下简称 CLM。

CLM 可以看作 N-gram 语⾔模型的⼀个直接扩展。N-gram 语⾔模型是基于前 N 个 token 来预测下⼀个 token，
CLM 则是基于⼀个⾃然语⾔序列的前⾯所有 token 来预测下⼀个 token，通过不断重复该过程来实现⽬标⽂本序
列的⽣成。也就是说，CLM 是⼀个经典的补全形式。例如，CLM 的输⼊和输出可以是：

因此，对于⼀个输⼊⽬标序列⻓度为 256，期待输出序列⻓度为 256 的任务，模型会不断根据前 256 个 token、
257个 token（输⼊+预测出来的第⼀个 token）...... 进⾏ 256 次计算，最后⽣成⼀个序列⻓度为 512 的输出⽂
本，这个输出⽂本前 256 个 token 为输⼊，后 256 个 token 就是我们期待的模型输出。

在前⾯我们说过，BERT 之所以可以采⽤预训练+微调的范式取得重⼤突破，正是因为其选择的 MLM、NSP 可以在
海量⽆监督语料上直接训练——⽽很明显，CLM 是更直接的预训练任务，其天⽣和⼈类书写⾃然语⾔⽂本的习惯
相契合，也和下游任务直接匹配，相对于 MLM 任务更加直接，可以在任何⾃然语⾔⽂本上直接应⽤。因此，CLM 
也可以使⽤海量的⾃然语⾔语料进⾏⼤规模的预训练。

（3）GPT 系列模型的发展  

⾃ GPT-1 推出开始，OpenAI ⼀直坚信 Decoder-Only 的模型结构和“体量即正义”的优化思路，不断扩⼤预训练数
据集、模型体量并对模型做出⼀些⼩的优化和修正，来不断探索更强⼤的预训练模型。从被 BERT 压制的 GPT-1，
到没有引起⾜够关注的 GPT-2，再到激发了涌现能⼒、带来⼤模型时代的 GPT-3，最后带来了跨时代的 
ChatGPT，OpenAI 通过数⼗年的努⼒证明了其思路的正确性。

下表总结了从 GPT-1 到 GPT-3 的模型结构、预训练语料⼤⼩的变化：

GPT-1 是 GPT 系列的开⼭之作，也是第⼀个使⽤ Decoder-Only 的预训练模型。但是，GPT-1 的模型体量和预训
练数据都较少，沿承了传统 Transformer 的模型结构，使⽤了 12层 Decoder Block 和 768 的隐藏层维度，模型参
数量仅有 1.17亿（0.12B），在⼤⼩为 5GB 的 BooksCorpus 数据集上预训练得到。可以看到，GPT-1 的参数规模
与预训练规模和 BERT-base 是⼤致相当的，但其表现相较于 BERT-base 却有所不如，这也是 GPT 系列模型没能成
为预训练语⾔模型时代的代表的原因。

input: 今天天⽓
output: 今天天⽓很

input: 今天天⽓很
output：今天天⽓很好



GPT-2 则是 OpenAI 在 GPT-1 的基础上进⼀步探究预训练语⾔模型多任务学习能⼒的产物。GPT-2 的模型结构和 
GPT-1 ⼤致相当，只是扩⼤了模型参数规模、将 Post-Norm 改为了 Pre-Norm（也就是先进⾏ LayerNorm 计算，
再进⼊注意⼒层计算）。这些改动的核⼼原因在于，由于模型层数增加、体量增⼤，梯度消失和爆炸的⻛险也不断
增加，为了使模型梯度更稳定对上述结构进⾏了优化。

GPT-2 的核⼼改进是⼤幅增加了预训练数据集和模型体量。GPT-2 的 Decoder Block 层数达到了48（注意，GPT-2 
共发布了四种规格的模型，此处我们仅指规格最⼤的 GPT-2 模型），隐藏层维度达到了 1600，模型整体参数量达 
15亿（1.5B），使⽤了⾃⼰抓取的 40GB ⼤⼩的 WebText 数据集进⾏预训练，不管是模型结构还是预训练⼤⼩都
超过了 1代⼀个数量级。

GPT-2 的另⼀个重⼤突破是以 zero-shot（零样本学习）为主要⽬标，也就是不对模型进⾏微调，直接要求模型解
决任务。例如，在传统的预训练-微调范式中，我们要解决⼀个问题，⼀般需要收集⼏百上千的训练样本，在这些
训练样本上微调预训练语⾔模型来实现该问题的解决。⽽ zero-shot 则强调不使⽤任何训练样本，直接通过向预训
练语⾔模型描述问题来去解决该问题。zero-shot 的思路⾃然是⽐预训练-微调范式更进⼀步、更⾼效的⾃然语⾔范
式，但是在 GPT-2 的时代，模型能⼒还不⾜够⽀撑较好的 zero-shot 效果，在⼤模型时代，zero-shot 及其延伸出
的 few-shot（少样本学习）才开始逐渐成为主流。

GPT-3 则是更进⼀步展示了 OpenAI“⼒⼤砖⻜”的核⼼思路，也是 LLM 的开创之作。在 GPT-2 的基础上，OpenAI 
进⼀步增⼤了模型体量和预训练数据量，整体参数量达 175B，是当之⽆愧的“⼤型语⾔模型”。在模型结构上，基
本没有⼤的改进，只是由于巨⼤的模型体量使⽤了稀疏注意⼒机制来取代传统的注意⼒机制。在预训练数据上，则
是分别从 CC、WebText、维基百科等⼤型语料集中采样，共采样了 45T、清洗后 570GB 的数据。根据推算，
GPT-3 需要在 1024张 A100（80GB 显存）的分布式训练集群上训练 1个⽉。

之所以说 GPT-3 是 LLM 的开创之作，除去其巨⼤的体量带来了涌现能⼒的凸显外，还在于其提出了 few-shot 的
重要思想。few-shot 是在 zero-shot 上的改进，研究者发现即使是 175B ⼤⼩的 GPT-3，想要在 zero-shot 上取得
较好的表现仍然是⼀件较为困难的事情。⽽ few-shot 是对 zero-shot 的⼀个折中，旨在提供给模型少样的示例来
教会它完成任务。few-shot ⼀般会在 prompt（也就是模型的输⼊）中增加 3~5个示例，来帮助模型理解。例如，
对于情感分类任务：

通过给模型提供少量示例，模型可以取得远好于 zero-shot 的良好表现。few-shot 也被称为上下⽂学习（In-
context Learning），即让模型从提供的上下⽂中的示例⾥学习问题的解决⽅法。GPT-3 在 few-shot 上展现的强
⼤能⼒，为 NLP 的突破带来了重要进展。如果对于绝⼤部分任务都可以通过⼈为构造 3~5个示例就能让模型解
决，其效率将远⾼于传统的预训练-微调范式，意味着 NLP 的进⼀步落地应⽤成为可能——⽽这，也正是 LLM 的核
⼼优势。

在 GPT 系列模型的基础上，通过引⼊预训练-指令微调-⼈类反馈强化学习的三阶段训练，OpenAI 发布了跨时代的 
ChatGPT，引发了⼤模型的热潮。也正是在 GPT-3 及 ChatGPT 的基础上，LLaMA、ChatGLM 等模型的发布进⼀
步揭示了 LLM 的⽆尽潜⼒。在下⼀节，我们将深⼊剖析⽬前 LLM 的普适架构——LLaMA。

3.3.2 LLaMA  

LLaMA模型是由Meta（前Facebook）开发的⼀系列⼤型预训练语⾔模型。从LLaMA-1到LLaMA-3，LLaMA系列模
型展示了⼤规模预训练语⾔模型的演进及其在实际应⽤中的显著潜⼒。

（1） 模型架构——Decoder Only  

zero-shot：请你判断‘这真是⼀个绝佳的机会’的情感是正向还是负向，如果是正向，输出1；否则输出0

few-shot：请你判断‘这真是⼀个绝佳的机会’的情感是正向还是负向，如果是正向，输出1；否则输出0。你可以参考以
下示例来判断：‘你的表现⾮常好’——1；‘太糟糕了’——0；‘真是⼀个好主意’——1。



与GPT系列模型⼀样，LLaMA模型也是基于Decoder-Only架构的预训练语⾔模型。LLaMA模型的整体结构与GPT
系列模型类似，只是在模型规模和预训练数据集上有所不同。如图3.13是LLaMA模型的架构示意图：

图3.13 LLaMA-3 模型结构

与GPT类似，LLaMA模型的处理流程也始于将输⼊⽂本通过tokenizer进⾏编码，转化为⼀系列的input_ids。这些
input_ids是模型能够理解和处理的数据格式。接下来，这些input_ids会经过embedding层的转换，这⾥每个
input_id会被映射到⼀个⾼维空间中的向量，即词向量。同时，输⼊⽂本的位置信息也会通过positional 
embedding层被编码，以确保模型能够理解词序上下⽂信息。

这样，input_ids经过embedding层和positional embedding层的结合，形成了hidden_states。hidden_states包
含了输⼊⽂本的语义和位置信息，是模型进⾏后续处理的基础，hidden_states随后被输⼊到模型的decoder层。

在decoder层中，hidden_states会经历⼀系列的处理，这些处理由多个decoder block组成。每个decoder block
都是模型的核⼼组成部分，它们负责对hidden_states进⾏深⼊的分析和转换。在每个decoder block内部，⾸先是
⼀个masked self-attention层。在这个层中，模型会分别计算query、key和value这三个向量。这些向量是通过
hidden_states线性变换得到的，它们是计算注意⼒权重的基础。然后使⽤softmax函数计算attention score，这
个分数反映了不同位置之间的关联强度。通过attention score，模型能够确定在⽣成当前词时，应该给予不同位置
的hidden_states多⼤的关注。然后，模型将value向量与attention score相乘，得到加权后的value，这就是
attention的结果。

在完成masked self-attention层之后，hidden_states会进⼊MLP层。在这个多层感知机层中，模型通过两个全连
接层对hidden_states进⾏进⼀步的特征提取。第⼀个全连接层将hidden_states映射到⼀个中间维度，然后通过激
活函数进⾏⾮线性变换，增加模型的⾮线性能⼒。第⼆个全连接层则将特征再次映射回原始的hidden_states维
度。



最后，经过多个decoder block的处理，hidden_states会通过⼀个线性层进⾏最终的映射，这个线性层的输出维度
与词表维度相同。这样，模型就可以根据hidden_states⽣成⽬标序列的概率分布，进⽽通过采样或贪婪解码等⽅
法，⽣成最终的输出序列。这⼀过程体现了LLaMA模型强⼤的序列⽣成能⼒。

（2） LLaMA模型的发展历程  

LLaMA-1 系列：

Meta于2023年2⽉发布了LLaMA-1，包括7B、13B、30B和65B四个参数量版本。

这些模型在超过1T token的语料上进⾏了预训练，其中最⼤的65B参数模型在2,048张A100 80G GPU上训练
了近21天。

LLaMA-1因其开源性和优异性能迅速成为开源社区中最受欢迎的⼤模型之⼀。

LLaMA-2 系列：

2023年7⽉，Meta发布了LLaMA-2，包含7B、13B、34B和70B四个参数量版本，除了34B模型外，其他均已
开源。

LLaMA-2将预训练的语料扩充到了2T token，并将模型的上下⽂⻓度从2,048翻倍到了4,096。

引⼊了分组查询注意⼒机制（Grouped-Query Attention, GQA）等技术。

LLaMA-3 系列：

2024年4⽉，Meta发布了LLaMA-3，包括8B和70B两个参数量版本，同时透露400B的LLaMA-3还在训练中。

LLaMA-3⽀持8K⻓⽂本，并采⽤了编码效率更⾼的tokenizer，词表⼤⼩为128K。

使⽤了超过15T token的预训练语料，是LLaMA-2的7倍多。

LLaMA模型以其技术创新、多参数版本、⼤规模预训练和⾼效架构设计⽽著称。模型⽀持从7亿到数百亿不等的参
数量，适应不同规模的应⽤需求。LLaMA-1以其开源性和优异性能迅速受到社区欢迎，⽽LLaMA-2和LLaMA-3进⼀
步通过引⼊分组查询注意⼒机制和⽀持更⻓⽂本输⼊，显著提升了模型性能和应⽤范围。特别是LLaMA-3，通过采
⽤128K词表⼤⼩的⾼效tokenizer和15T token的庞⼤训练数据，实现了在多语⾔和多任务处理上的重⼤进步。
Meta对模型安全性和社区⽀持的持续关注，预示着LLaMA将继续作为AI技术发展的重要推动⼒，促进全球范围内
的技术应⽤和创新。

3.3.3 GLM  

GLM 系列模型是由智谱开发的主流中⽂ LLM 之⼀，包括 ChatGLM1、2、3及 GLM-4 系列模型，覆盖了指令理
解、代码⽣成等多种应⽤场景，曾在多种中⽂评估集上达到 SOTA 性能。

ChatGLM-6B 是 GLM 系列的开⼭之作，也是 2023年国内最早的开源中⽂ LLM，也是最早提出不同于 GPT、
LLaMA 的独特模型架构的 LLM。在整个中⽂ LLM 的发展历程中，GLM 具有独特且重⼤的技术意义。本节将简要
叙述 GLM 系列的发展，并介绍其不同于 GPT、LLaMA 系列模型的独特技术思路。

（1）模型架构-相对于 GPT 的略微修正  

GLM 最初是由清华计算机系推出的⼀种通⽤语⾔模型基座，其核⼼思路是在传统 CLM 预训练任务基础上，加⼊ 
MLM 思想，从⽽构建⼀个在 NLG 和 NLU 任务上都具有良好表现的统⼀模型。

在整体模型结构上，GLM 和 GPT ⼤致类似，均是 Decoder-Only 的结构，仅有三点细微差异：



1. 使⽤ Post Norm ⽽⾮ Pre Norm。Post Norm 是指在进⾏残差连接计算时，先完成残差计算，再进⾏ 
LayerNorm 计算；⽽类似于 GPT、LLaMA 等模型都使⽤了 Pre Norm，也就是先进⾏ LayerNorm 计算，再
进⾏残差的计算。相对⽽⾔，Post Norm 由于在残差之后做归⼀化，对参数正则化的效果更强，进⽽模型的
鲁棒性也会更好；Pre Norm相对于因为有⼀部分参数直接加在了后⾯，不需要对这部分参数进⾏正则化，正
好可以防⽌模型的梯度爆炸或者梯度消失。因此，对于更⼤体量的模型来说，⼀般认为 Pre Norm 效果会更
好。但 GLM 论⽂提出，使⽤ Post Norm 可以避免 LLM 的数值错误（虽然主流 LLM 仍然使⽤了 Pre 
Norm）；

2. 使⽤单个线性层实现最终 token 的预测，⽽不是使⽤ MLP；这样的结构更加简单也更加鲁棒，即减少了最终
输出的参数量，将更⼤的参数量放在了模型本身；

3. 激活函数从 ReLU 换成了 GeLUs。ReLU 是传统的激活函数，其核⼼计算逻辑为去除⼩于 0的传播，保留⼤于 
0的传播；GeLUs 核⼼是对接近于 0的正向传播，做了⼀个⾮线性映射，保证了激活函数后的⾮线性输出，具
有⼀定的连续性。

（2）预训练任务-GLM  

GLM 的核⼼创新点主要在于其提出的 GLM（General Language Model，通⽤语⾔模型）任务，这也是 GLM 的名
字由来。GLM 是⼀种结合了⾃编码思想和⾃回归思想的预训练⽅法。所谓⾃编码思想，其实也就是 MLM 的任务学
习思路，在输⼊⽂本中随机删除连续的 tokens，要求模型学习被删除的 tokens；所谓⾃回归思想，其实就是传统
的 CLM 任务学习思路，也就是要求模型按顺序重建连续 tokens。

GLM 通过优化⼀个⾃回归空⽩填充任务来实现 MLM 与 CLM 思想的结合。其核⼼思想是，对于⼀个输⼊序列，会
类似于 MLM ⼀样进⾏随机的掩码，但遮蔽的不是和 MLM ⼀样的单个 token，⽽是每次遮蔽⼀连串 token；模型
在学习时，既需要使⽤遮蔽部分的上下⽂预测遮蔽部分，在遮蔽部分内部⼜需要以 CLM 的⽅式完成被遮蔽的 
tokens 的预测。例如，输⼊和输出可能是：

通过将 MLM 与 CLM 思想相结合，既适配逐个 token ⽣成的⽣成类任务，也迫使模型从前后两个⽅向学习输⼊⽂
本的隐含关系从⽽适配了理解类任务。使⽤ GLM 预训练任务产出的 GLM 模型，在⼀定程度上展现了其超出同体
量 BERT 系模型的优越性能：

输⼊：I <MASK> because you <MASK>
输出：<MASK> - love you; <MASK> - are a wonderful person



图3.14 alt text

不过，GLM 预训练任务更多的优势还是展现在预训练模型时代，迈⼊ LLM 时代后，针对于超⼤规模、体量的预训
练，CLM 展现出远超 MLM 的优势。通过将模型体量加⼤、预训练规模扩⼤，CLM 预训练得到的⽣成模型在⽂本
理解上也能具有超出 MLM 训练的理解模型的能⼒，因此，ChatGLM 系列模型也仅在第⼀代模型使⽤了 GLM 的预
训练思想，从 ChatGLM2 开始，还是回归了传统的 CLM 建模。虽然从 LLM 的整体发展路径来看，GLM 预训练任
务似乎是⼀个失败的尝试，但通过精巧的设计将 CLM 与 MLM 融合，并第⼀时间产出了中⽂开源的原⽣ LLM，其
思路仍然存在较⼤的借鉴意义。

（3）GLM 家族的发展  

在 GLM 模型（即使⽤原⽣ GLM 架构及预训练任务的早期预训练模型）的基础上，参考 ChatGPT 的技术思路进⾏ 
SFT 和 RLHF，智谱于 23年 3⽉发布了第⼀个中⽂开源 LLM ChatGLM-6B，成为了众多中⽂ LLM 研究者的起点。
ChatGLM-6B 在 1T 语料上进⾏预训练，⽀持 2K 的上下⽂⻓度。

在 23年 6⽉，智谱就开源了 ChatGLM2-6B。相对于⼀代，ChatGLM2 将上下⽂⻓度扩展到了 32K，通过更⼤的预
训练规模实现了模型性能的⼤幅度突破。不过，在 ChatGLM2 中，模型架构就基本回归了 LLaMA 架构，引⼊ 
MQA 的注意⼒机制，预训练任务也回归经典的 CLM，放弃了 GLM 的失败尝试。

ChatGLM3-6B 发布于 23年 10⽉，相对于⼆代在语义、数学、推理、代码和知识⽅⾯都达到了当时的 SOTA 性
能，但是官⽅给出的技术报告说明 ChatGLM3 在模型架构上相对⼆代没有变化，最主要的优化来源是更多样化的
训练数据集、更充⾜的训练步骤和更优化的训练策略。ChatGLM3 的另⼀个重要改进在于其开始⽀持函数调⽤与代
码解释器，开发者可以直接使⽤开源的 ChatGLM3 来实现 Agent 开发，具有更⼴泛的应⽤价值。

2024年 1⽉，智谱发布了⽀持 128K 上下⽂，包括多种类型的 GLM-4 系列模型，评估其在英⽂基准上达到了 GPT-
4 的⽔平。不过，智谱并未直接开源 GLM-4，⽽是开源了其轻量级版本 GLM-4-9B 模型，其在 1T token 的多语⾔
语料库上进⾏预训练，上下⽂⻓度为 8K，并使⽤与 GLM-4 相同的管道和数据进⾏后训练。在训练计算量较少的情
况下，其超越了 Llama-3-8B，并⽀持 GLM-4 中所有⼯具的功能。

图3.15展示了 GLM 系列模型在基准集上的表现演进：



图3.15 alt text

参考资料

[1] Jacob Devlin, Ming-Wei Chang, Kenton Lee, Kristina Toutanova. (2019). BERT: Pre-training of Deep 
Bidirectional Transformers for Language Understanding. arXiv preprint arXiv:1810.04805.

[2] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike Lewis, Luke 
Zettlemoyer, Veselin Stoyanov. (2019). RoBERTa: A Robustly Optimized BERT Pretraining Approach. arXiv 
preprint arXiv:1907.11692.

[3] Zhenzhong Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut. (2020). 
ALBERT: A Lite BERT for Self-supervised Learning of Language Representations. arXiv preprint arXiv:1909.11942.

[4] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi Zhou, 
Wei Li, Peter J. Liu. (2023). Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer. arXiv 
preprint arXiv:1910.10683.

[5] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi Zhou, 
Wei Li, Peter J. Liu. (2020). Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer. 
Journal of Machine Learning Research, 21(140), 1–67.

[6] Alec Radford, Karthik Narasimhan. (2018). Improving Language Understanding by Generative Pre-Training. 
Retrieved from https://api.semanticscholar.org/CorpusID:49313245

[7] Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind 
Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gretchen 
Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu, Clemens Winter, 
Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess, Jack Clark, 

https://api.semanticscholar.org/CorpusID:49313245


Christopher Berner, Sam McCandlish, Alec Radford, Ilya Sutskever, Dario Amodei. (2020). Language Models 
are Few-Shot Learners. arXiv preprint arXiv:2005.14165.

[8] 张帆, 陈安东的⽂章“万字⻓⽂带你梳理Llama开源家族：从Llama-1到Llama-3”，来源：https://mp.weixin.qq.
com/s/5_VnzP3JmOB0D5geV5HRFg

[9] Team GLM, Aohan Zeng, Bin Xu, Bowen Wang, Chenhui Zhang, Da Yin, Dan Zhang, Diego Rojas, Guanyu 
Feng, Hanlin Zhao, Hanyu Lai, Hao Yu, Hongning Wang, Jiadai Sun, Jiajie Zhang, Jiale Cheng, Jiayi Gui, Jie Tang, 
Jing Zhang, Jingyu Sun, Juanzi Li, Lei Zhao, Lindong Wu, Lucen Zhong, Mingdao Liu, Minlie Huang, Peng 
Zhang, Qinkai Zheng, Rui Lu, Shuaiqi Duan, Shudan Zhang, Shulin Cao, Shuxun Yang, Weng Lam Tam, Wenyi 
Zhao, Xiao Liu, Xiao Xia, Xiaohan Zhang, Xiaotao Gu, Xin Lv, Xinghan Liu, Xinyi Liu, Xinyue Yang, Xixuan Song, 
Xunkai Zhang, Yifan An, Yifan Xu, Yilin Niu, Yuantao Yang, Yueyan Li, Yushi Bai, Yuxiao Dong, Zehan Qi, 
Zhaoyu Wang, Zhen Yang, Zhengxiao Du, Zhenyu Hou, and Zihan Wang. (2024). ChatGLM: A Family of Large 
Language Models from GLM-130B to GLM-4 All Tools. arXiv preprint arXiv:2406.12793.

[10] Zhengxiao Du, Yujie Qian, Xiao Liu, Ming Ding, Jiezhong Qiu, Zhilin Yang 和 Jie Tang. (2022). GLM: General 
Language Model Pretraining with Autoregressive Blank Infilling. arXiv preprint arXiv:2103.10360.

https://mp.weixin.qq.com/s/5_VnzP3JmOB0D5geV5HRFg


第四章 ⼤语⾔模型  
4.1 什么是 LLM  
在前三章，我们从 NLP 的定义与主要任务出发，介绍了引发 NLP 领域重⼤变⾰的核⼼思想——注意⼒机制与 
Transformer 架构。随着 Transformer 架构的横空出世，NLP 领域逐步进⼊预训练-微调范式，以 Transformer 
为基础的、通过预训练获得强⼤⽂本表示能⼒的预训练语⾔模型层出不穷，将 NLP 的各种经典任务都推进到了⼀
个新的⾼度。

随着2022年底 ChatGPT 再⼀次刷新 NLP 的能⼒上限，⼤语⾔模型（Large Language Model，LLM）开始接替传
统的预训练语⾔模型（Pre-trained Language Model，PLM） 成为 NLP 的主流⽅向，基于 LLM 的全新研究范式
也正在刷新被 BERT 发扬光⼤的预训练-微调范式，NLP 由此迎来⼜⼀次翻天覆地的变化。从2022年底⾄今，LLM 
能⼒上限不断刷新，通⽤基座⼤模型数量指数级上升，基于 LLM 的概念、应⽤也是⽇新⽉异，预示着⼤模型时代
的到来。

在第三章，我们从模型架构的⻆度出发，分别分析了 Encoder-Only、Encoder-Decoder 和 Decoder-Only 三种架
构下的经典模型及其训练过程。这些模型有的是 LLM 时代之前堪称时代主⻆的⾥程碑（如 BERT），有的则是 LLM 
时代的舞台主⻆，是通⽤⼈⼯智能（Artificial General Intelligence，AGI） 的有⼒竞争者。那么，究竟什么是 
LLM，LLM 和传统的 PLM 的核⼼差异在哪⾥，⼜是什么令研究者们对 LLM 抱有如此⾼的热情与期待呢？

在本章中，我们将结合上⽂的模型架构讲解，深⼊分析 LLM 的定义、特点及其能⼒，为读者揭示 LLM 与传统深度
学习模型的核⼼差异，并在此基础上，展示 LLM 的实际三阶段训练过程，帮助读者从概念上梳理清楚 LLM 是如何
获得这样的独特能⼒的，从⽽为进⼀步实践 LLM 完整训练提供理论基础。

4.1.1 LLM 的定义  

LLM，即 Large Language Model，中⽂名为⼤语⾔模型或⼤型语⾔模型，是⼀种相较传统语⾔模型参数量更多、
在更⼤规模语料上进⾏预训练的语⾔模型。

在第⼀章中，我们已经介绍了语⾔模型的概念，即通过预测下⼀个 token 任务来训练的 NLP 模型。LLM 使⽤与传
统预训练语⾔模型相似的架构与预训练任务（如 Decoder-Only 架构与 CLM 预训练任务），但拥有更庞⼤的参
数、在更海量的语料上进⾏预训练，也从⽽展现出与传统预训练语⾔模型截然不同的能⼒。

⼀般来说，LLM 指包含数百亿（或更多）参数的语⾔模型，它们往往在数 T token 语料上通过多卡分布式集群进
⾏预训练，具备远超出传统预训练模型的⽂本理解与⽣成能⼒。不过，随着 LLM 研究的不断深⼊，多种参数尺⼨
的 LLM 逐渐丰富，⼴义的 LLM ⼀般覆盖了从⼗亿参数（如 Qwen-1.5B）到千亿参数（如 Grok-314B）的所有⼤
型语⾔模型。只要模型展现出涌现能⼒，即在⼀系列复杂任务上表现出远超传统预训练模型（如 BERT、T5）的能
⼒与潜⼒，都可以称之为 LLM。

⼀般认为，GPT-3（1750亿参数）是 LLM 的开端，基于 GPT-3 通过 预训练（Pretraining）、监督微调
（Supervised Fine-Tuning，SFT）、强化学习与⼈类反馈（Reinforcement Learning with Human Feedback，
RLHF）三阶段训练得到的 ChatGPT 更是主导了 LLM 时代的到来。⾃2022年11⽉ OpenAI 发布 ChatGPT ⾄今不
到2年时间⾥，已涌现出了上百个各具特⾊、能⼒不⼀的 LLM。下表列举了⾃ 2022年11⽉⾄2023年11⽉国内外发
布的部分⼤模型：



时间 开源 LLM 闭源 LLM

2022.11 ⽆ OpenAI-ChatGPT

2023.02 Meta-LLaMA；复旦-MOSS ⽆

2023.03 斯坦福-Alpaca、Vicuna；智谱-ChatGLM
OpenAI-GPT4；百度-⽂⼼⼀⾔；
Anthropic-Claude；Google-Bard

2023.04 阿⾥-通义千问；Stability AI-StableLM 商汤-⽇⽇新

2023.05 微软-Pi；Tll-Falcon 讯⻜-星⽕⼤模型；Google-PaLM2

2023.06
智谱-ChatGLM2；上海 AI Lab-书⽣浦语；百川-
BaiChuan；⻁博-TigerBot

360-智脑⼤模型

2023.07 Meta-LLaMA2 Anthropic-Claude2；华为-盘古⼤模型3

2023.08 ⽆ 字节-⾖包

2023.09 百川-BaiChuan2 Google-Gemini；腾讯-混元⼤模型

2023.11 零⼀万物-Yi；幻⽅-DeepSeek xAI-Grok

⽬前，国内外企业、研究院正不断推出性能更强⼤的 LLM，探索通往 AGI 的道路。

4.1.2 LLM 的能⼒  

（1）涌现能⼒（Emergent Abilities）  

区分 LLM 与传统 PLM 最显著的特征即是 LLM 具备 涌现能⼒  。涌现能⼒是指同样的模型架构与预训练任务下，某
些能⼒在⼩型模型中不明显，但在⼤型模型中特别突出。可以类⽐到物理学中的相变现象，涌现能⼒的显现就像是
模型性能随着规模增⼤⽽迅速提升，超过了随机⽔平，也就是我们常说的量变引起了质变。

具体来说，涌现能⼒可以定义为与某些复杂任务相关的能⼒。但⼀般⽽⾔，NLP 更关注的是它们具备的通⽤能⼒，
也就是能够应⽤于解决各种 NLP 任务的能⼒。涌现能⼒是⽬前业界和学界对 LLM 保持较⾼的热情和关注的核⼼所
在，即虽然 LLM ⽬前的能⼒、所能解决的任务与⼈类最终所期待的通⽤⼈⼯智能还存在不⼩的差距，但在涌现能
⼒的作⽤下，我们相信随着研究的不断深⼊、⾼质量数据的不断涌现和更⾼效的模型架构及训练框架的出现，LLM 
终能具备通⽤⼈⼯智能所需要具备的能⼒，从⽽给⼈类⽣活带来质变。

（2）上下⽂学习（In-context Learning）  

上下⽂学习能⼒是由 GPT-3 ⾸次引⼊的。具体⽽⾔，上下⽂学习是指允许语⾔模型在提供⾃然语⾔指令或多个任务
示例的情况下，通过理解上下⽂并⽣成相应输出的⽅式来执⾏任务，⽽⽆需额外的训练或参数更新。

对传统 PLM，在经过⾼成本的预训练之后，往往还需要对指定的下游任务进⾏有监督微调。虽然传统 PLM 体量较
⼩，对算⼒要求较低，但例如 BERT 类模型（0.5B 参数），进⾏有监督微调⼀般还是需要 10G 以上显存，有⼀定
的算⼒成本。⽽同时，有监督微调的训练数据的成本更⾼。针对下游任务难度的不同，需要的训练样本数往往在 
1k~数⼗k 不等，均需要进⾏⼈⼯标注，数据获取上有不⼩的成本。⽽具备上下⽂学习能⼒的 LLM 往往⽆需进⾏⾼
成本的额外训练或微调，⽽可以通过少数示例或是调整⾃然语⾔指令，来处理绝⼤部分任务，从⽽⼤⼤节省了算⼒
和数据成本。



上下⽂学习能⼒也正在引发 NLP 研究范式的变⾰。在传统 PLM 时代，解决 NLP 下游任务的⼀般范式是预训练-微
调，即选⽤⼀个合适的预训练模型，针对⾃⼰的下游任务准备有监督数据来进⾏微调。⽽通过使⽤具备上下⽂学习
能⼒的 LLM，⼀般范式开始向 Prompt Engineering 也就是调整 Prompt 来激发 LLM 的能⼒转变。例如，⽬前绝
⼤部分 NLP 任务，通过调整 Prompt 或提供 1~5 个⾃然语⾔示例，就可以令 GPT-4 达到超过传统 PLM 微调的效
果。

（3）指令遵循（Instruction Following）  

通过使⽤⾃然语⾔描述的多任务数据进⾏微调，也就是所谓的 指令微调  ，LLM 被证明在同样使⽤指令形式化描述
的未⻅过的任务上表现良好。也就是说，经过指令微调的 LLM 能够理解并遵循未⻅过的指令，并根据任务指令执
⾏任务，⽽⽆需事先⻅过具体示例，这展示了其强⼤的泛化能⼒。

指令遵循能⼒意味我们不再需要每⼀件事都先教模型，然后它才能去做。我们只需要在指令微调阶段混合多种指令
来训练其泛化能⼒，LLM 就可以处理⼈类绝⼤部分指令，即可以灵活地解决⽤户遇到的问题。这⼀点在 ChatGPT 
上体现地尤为明显。ChatGPT 之所以能够具备极⾼的热度，其核⼼原因即在于其不再是仅能⽤于学界、业界研究的
理论模型，⽽同样可以⼴泛地服务于各⾏各业⽤户。通过给 ChatGPT 输⼊指令，其可以写作⽂、编程序、批改试
卷、阅读报纸等等。

指令遵循能⼒使 LLM 可以真正和多个⾏业结合起来，通过⼈⼯智能技术为⼈类⽣活的⽅⽅⾯⾯赋能，从⽽为⼈类
带来质的改变。不管是⽬前⼤⽕的 Agent、WorkFlow，还是并不遥远的未来可能就会出现的全能助理、超级智
能，其本质依赖的都是 LLM 的指令遵循能⼒。

（4）逐步推理（Step by Step Reasoning）  

逻辑推理，尤其是涉及多个推理步骤的复杂推理任务，⼀直是 NLP 的攻关难点，也是⼈⼯智能难以得到普遍认可
的重要原因。毕竟，如果⼀个模型不能解答基础的“鸡兔同笼”问题，或者不能识别语⾔中的逻辑陷阱，你很难认为
它是“智能的”⽽⾮“智障的”。

但是，传统的 NLP 模型通常难以解决涉及多个推理步骤的复杂任务，例如数学问题。然⽽，LLM 通过采⽤思维链
（Chain-of-Thought，CoT）推理策略，可以利⽤包含中间推理步骤的提示机制来解决这些任务，从⽽得出最终答
案。据推测，这种能⼒可能是通过对代码的训练获得的。

逐步推理能⼒意味着 LLM 可以处理复杂逻辑任务，也就是说可以解决⽇常⽣活中需要逻辑判断的绝⼤部分问题，
从⽽向“可靠的”智能助理迈出了坚实的⼀步。

这些独特能⼒是 LLM 区别于传统 PLM 的重要优势，也让 LLM 在处理各种任务时表现出⾊，使它们成为了解决复
杂问题和应⽤于多领域的强⼤⼯具。正是因为涌现能⼒、上下⽂学习能⼒、指令遵循能⼒与逐步推理能⼒的存在，
NLP 研究⼈员相信 LLM 是迈向通⽤⼈⼯智能，帮助⼈类社会实现⽣产⼒质变的重要途径。⽽事实上，⽬前已有众
多基于 LLM 的应⽤，旨在利⽤ LLM 的独特能⼒显著提⾼⽣产⼒。例如，微软基于 GPT-4 推出的 Copilot，就基于 
LLM 强⼤的指令遵循能⼒与逐步推理能⼒，通过提供代码补全、代码提示、代码编写等多种功能，辅助程序员更⾼
效、便捷、精准地编写程序，极⼤提⾼了程序员的⽣产效率。

4.1.3 LLM 的特点  

除上⽂讨论的 LLM 的核⼼能⼒外，LLM 还具备⼀些额外的、有趣或是危险的特点，这些特点也是 LLM ⽬前重要的
研究⽅向，在此讨论其中⼀⼆：

（1）多语⾔⽀持  



多语⾔、跨语⾔模型曾经是 NLP 的⼀个重要研究⽅向，但 LLM 由于需要使⽤到海量的语料进⾏预训练，训练语料
往往本身就是多语⾔的，因此 LLM 天⽣即具有多语⾔、跨语⾔能⼒，只不过随着训练语料和指令微调的差异，在
不同语⾔上的能⼒有所差异。由于英⽂⾼质量语料⽬前仍是占据⼤部分，以 GPT-4 为代表的绝⼤部分模型在英⽂上
具有显著超越中⽂的能⼒。虽然都可以对多种语⾔进⾏处理，但针对中⽂进⾏额外训练和优化的国内模型（如⽂⼼
⼀⾔、通义千问等）往往能够在中⽂环境上展现更优越的效果。

（2）⻓⽂本处理  

由于能够处理多⻓的上下⽂⽂本，在⼀定程度上决定了模型的部分能⼒上限，LLM 往往⽐传统 PLM 更看重⻓⽂本
处理能⼒。相对于以 512 token 为惯例的传统 PLM（如 BERT、T5等模型的最⼤上下⽂⻓度均为 512），LLM 在
拓宽最⼤上下⽂⻓度⽅⾯可谓妙计频出。由于在海量分布式训练集群上进⾏训练，LLM 往往在训练时就⽀持 4k、
8k 甚⾄ 32k 的上下⽂⻓度。同时，LLM ⼤部分采⽤了旋转位置编码（Rotary Positional Encoding，RoPE）（或
者同样具有外推能⼒的 AliBi）作为位置编码，具有⼀定的⻓度外推能⼒，也就是在推理时能够处理显著⻓于训练⻓
度的⽂本。例如，InternLM 在 32k ⻓度上下⽂上进⾏了预训练，但通过 RoPE 能够实现 200k ⻓度的上下⽂处
理。通过不断增强⻓⽂本处理能⼒，LLM 往往能够具备更强的信息阅读、信息总结能⼒，从⽽解决诸如要求 LLM 
读完《红楼梦》并写⼀篇对应的⾼考作⽂的“世纪难题”。

（3）拓展多模态  

LLM 的强⼤能⼒也为其带来了跨模态的强⼤表现。随着 LLM 的不断改进，通过为 LLM 增加额外的参数来进⾏图像
表示，从⽽利⽤ LLM 的强⼤能⼒打造⽀持⽂字、图像双模态的模型，已经是⼀个成功的⽅法。通过引⼊ Adapter 
层和图像编码器，并针对性地在图⽂数据上进⾏有监督微调，模型能够具备不错的图⽂问答甚⾄⽣成能⼒。在未
来，如何对⻬⽂本与图像的表示，从⽽打造更强⼤的多模态⼤模型，将 LLM 的能⼒辐射到更多模态，是⼀个重要
的研究⽅向。

（4）挥之不去的幻觉  

幻觉，是指 LLM 根据 Prompt 杜撰⽣成虚假、错误信息的表现。例如，当我们要求 LLM ⽣成⼀篇学术论⽂及其参
考⽂献列表时，其往往会捏造众多看似“⼀本正经”实则完全不存在的论⽂和研究。幻觉问题是 LLM 的固有缺陷，也
是⽬前 LLM 研究及应⽤的巨⼤挑战。尤其是在医学、⾦融学等⾮常强调精准、正确的领域，幻觉的存在可能造成
⾮常严重的后果。⽬前也有很多研究提供了削弱幻觉的⼀些⽅法，如 Prompt ⾥进⾏限制、通过 RAG（检索增强⽣
成）来指导⽣成等，但都还只能⼀定程度减弱幻觉⽽⽆法彻底根除。

除上述⼏点之外，LLM 还存在诸多可供研究的特点，例如我们将在下⼀节详细论述的 LLM 三阶段训练流程、LLM 
的⾃我反思性等，此处就不⼀⼀列举赘述了。

4.2 如何训练⼀个 LLM  
在上⼀节，我们分析了 LLM 的定义及其特有的强⼤能⼒，通过更⼤规模的参数和海量的训练语料获得远超传统预
训练模型的涌现能⼒，展现出强⼤的上下⽂学习、指令遵循及逐步推理能⼒，带来 NLP 领域的全新变⾰。那么，
通过什么样的步骤，我们才可以训练出⼀个具有涌现能⼒的 LLM 呢？训练⼀个 LLM，与训练传统的预训练模型，
⼜有什么区别？



图4.1 训练 LLM 的三个阶段

⼀般⽽⾔，训练⼀个完整的 LLM 需要经过图1中的三个阶段——Pretrain、SFT 和 RLHF。在这⼀节，我们将详细
论述训练 LLM 的三个阶段，并分析每⼀个阶段的过程及其核⼼难点、注意事项，帮助读者们从理论上了解要训练
⼀个 LLM，需要经过哪些步骤。

4.2.1 Pretrain  

Pretrain，即预训练，是训练 LLM 最核⼼也是⼯程量最⼤的第⼀步。LLM 的预训练和传统预训练模型⾮常类似，
同样是使⽤海量⽆监督⽂本对随机初始化的模型参数进⾏训练。正如我们在第三章中所⻅，⽬前主流的 LLM ⼏乎
都采⽤了 Decoder-Only 的类 GPT 架构（LLaMA 架构），它们的预训练任务也都沿承了 GPT 模型的经典预训练任
务——因果语⾔模型（Causal Language Model，CLM）。

因果语⾔模型建模，即和最初的语⾔模型⼀致，通过给出上⽂要求模型预测下⼀个 token 来进⾏训练。CLM 的过
程和原理我们已在第三章详细论述过，此处就不再赘述。LLM 的预训练同传统预训练模型的核⼼差异即在于，预训
练的体量和资源消耗。

根据定义，LLM 的核⼼特点即在于其具有远超传统预训练模型的参数量，同时在更海量的语料上进⾏预训练。传统
预训练模型如 BERT，有 base 和 large 两个版本。BERT-base 模型由 12个 Encoder 层组成，其 hidden_size 为 
768，使⽤ 12个头作为多头注意⼒层，整体参数量为 1亿（110M）；⽽ BERT-large 模型由 24个 Encoder 层组
成，hidden_size 为 1024，有 16个头，整体参数量为 3亿（340M）。同时，BERT 预训练使⽤了 33亿（3B）
token 的语料，在 64块 TPU 上训练了 4天。事实上，相对于传统的深度学习模型，3亿参数量、33亿训练数据的 
BERT 已经是⼀个能⼒超群、资源消耗巨⼤的庞然⼤物。

但是，前⾯我们提到，⼀般⽽⾔的 LLM 通常具有数百亿甚⾄上千亿参数，即使是⼴义上最⼩的 LLM，⼀般也有⼗
亿（1B）以上的参数量。例如以开⼭之作 GPT-3 为例，其有 96个 Decoder 层，12288 的 hidden_size 和 96个
头，共有 1750亿（175B）参数，⽐ BERT ⼤出快 3个数量级。即使是⽬前流⾏的⼩型 LLM 如 Qwen-1.8B，其也
有 24个 Decoder 层、2048的 hidden_size 和 16个注意⼒头，整体参数量达到 18亿（1.8B）。



模型 hidden_layers hidden_size heads 整体参数量 预训练数据量

BERT-base 12 768 12 0.1B 3B

BERT-large 24 1024 16 0.3B 3B

Qwen-1.8B 24 2048 16 1.8B 2.2T

LLaMA-7B 32 4096 32 7B 1T

GPT-3 96 12288 96 175B 300B

更重要的是，LLM 往往需要使⽤更⼤规模的预训练语料。根据由 OpenAI 提出的 Scaling Law：C ~ 6ND，其中 C 
为计算量，N 为模型参数，D 为训练的 token 数，可以实验得出训练 token 数应该是模型参数的 1.7倍，也就是说 
175B 的 GPT-3，需要使⽤ 300B token 进⾏预训练。⽽ LLaMA 更是进⼀步提出，使⽤ 20倍 token 来训练模型能
达到效果最优，因此 175B 的 GPT-3，可以使⽤3.5T token 数据预训练达到最优性能。

如此庞⼤的模型参数和预训练数据，使得预训练⼀个 LLM 所需要的算⼒资源极其庞⼤。事实上，哪怕是预训练⼀
个 1B 的⼤模型，也⾄少需要多卡分布式 GPU 集群，通过分布式框架对模型参数、训练的中间参数和训练数据进
⾏切分，才能通过以天为单位的⻓时间训练来完成。⼀般来说，百亿级 LLM 需要 1024张 A100 训练⼀个多⽉，⽽
⼗亿级 LLM ⼀般也需要 256张 A100 训练两、三天，计算资源消耗⾮常⾼。

也正因如此，分布式训练框架也成为 LLM 训练必不可少的组成部分。分布式训练框架的核⼼思路是数据并⾏和模
型并⾏。所谓数据并⾏，是指训练模型的尺⼨可以被单个 GPU 内存容纳，但是由于增⼤训练的 batch_size 会增⼤
显存开销，⽆法使⽤较⼤的 batch_size 进⾏训练；同时，训练数据量⾮常⼤，使⽤单张 GPU 训练时⻓难以接受。

图4.2 模型、数据并⾏

因此，如图4.2所示可以让模型实例在不同 GPU 和不同批数据上运⾏，每⼀次前向传递完成之后，收集所有实例的
梯度并计算梯度更新，更新模型参数之后再传递到所有实例。也就是在数据并⾏的情况下，每张 GPU 上的模型参
数是保持⼀致的，训练的总批次⼤⼩等于每张卡上的批次⼤⼩之和。



但是，当 LLM 扩⼤到上百亿参数，单张 GPU 内存往往就⽆法存放完整的模型参数。如图4.3所示，在这种情况
下，可以将模型拆分到多个 GPU 上，每个 GPU 上存放不同的层或不同的部分，从⽽实现模型并⾏。

图4.3 模型并⾏

 

在数据并⾏和模型并⾏的思想基础上，还演化出了多种更⾼效的分布式⽅式，例如张量并⾏、3D 并⾏、ZeRO
（Zero Redundancy Optimizer，零冗余优化器）等。⽬前，主流的分布式训练框架包括 Deepspeed、
Megatron-LM、ColossalAI 等，其中，Deepspeed 使⽤⾯最⼴。

Deepspeed 的核⼼策略是 ZeRO 和 CPU-offload。ZeRO 是⼀种显存优化的数据并⾏⽅案，其核⼼思想是优化数据
并⾏时每张卡的显存占⽤，从⽽实现对更⼤规模模型的⽀持。ZeRO 将模型训练阶段每张卡被占⽤的显存分为两
类：

模型状态（Model States），包括模型参数、模型梯度和优化器 Adam 的状态参数。假设模型参数量为 
1M，⼀般来说，在混合精度训练的情况下，该部分需要 16M 的空间进⾏存储，其中 Adam 状态参数会占据 
12M 的存储空间。

剩余状态（Residual States），除了模型状态之外的显存占⽤，包括激活值、各种缓存和显存碎⽚。

针对上述显存占⽤，ZeRO 提出了三种不断递进的优化策略：

1. ZeRO-1，对模型状态中的 Adam 状态参数进⾏分⽚，即每张卡只存储  的 Adam 状态参数，其他参数仍然
保持每张卡⼀份。

2. ZeRO-2，继续对模型梯度进⾏分⽚，每张卡只存储  的模型梯度和 Adam 状态参数，仅模型参数保持每张
卡⼀份。

3. ZeRO-3，将模型参数也进⾏分⽚，每张卡只存储  的模型梯度、模型参数和 Adam 状态参数。



数据集 占⽐ 数据集⼤⼩（Disk size）

CommonCrawl 67.0% 3.3 TB

C4 15.0% 783 GB

Github 4.5% 328 GB

Wikipedia 4.5% 83 GB

Books 4.5% 85 GB

ArXiv 2.5% 92 GB

StackExchange 2.0% 78 GB

可以看出，随着分⽚的参数量不断增加，每张卡需要占⽤的显存也不断减少。当然，分⽚的增加也就意味着训练中
通信开销的增加，⼀般⽽⾔，每张卡的 GPU 利⽤率 ZeRO-1 最⾼⽽ ZeRO-3 最低。具体使⽤什么策略，需要结合
计算资源的情况和需要训练的模型体量动态确定。

除去计算资源的要求，训练数据本身也是预训练 LLM 的⼀个重⼤挑战。训练⼀个 LLM，⾄少需要数百 B 甚⾄上 T 
的预训练语料。根据研究，LLM 所掌握的知识绝⼤部分都是在预训练过程中学会的，因此，为了使训练出的 LLM 
能够覆盖尽可能⼴的知识⾯，预训练语料需要组织多种来源的数据，并以⼀定⽐例进⾏混合。⽬前，主要的开源预
训练语料包括 CommonCrawl、C4、Github、Wikipedia 等。不同的 LLM 往往会在开源预训练语料基础上，加⼊
部分私有⾼质量语料，再基于⾃⼰实验得到的最佳配⽐来构造预训练数据集。事实上，数据配⽐向来是预训练 LLM 
的“核⼼秘籍”，不同的配⽐往往会相当⼤程度影响最终模型训练出来的性能。例如，下表展示了 LLaMA 的预训练
数据及配⽐：

训练⼀个中⽂ LLM，训练数据的难度会更⼤。⽬前，⾼质量语料还是⼤部分集中在英⽂范畴，例如上表的 
Wikipedia、Arxiv 等，均是英⽂数据集；⽽ C4 等多语⾔数据集中，英⽂语料也占据主要地位。⽬前开源的中⽂ 
LLM 如 ChatGLM、Baichuan 等模型均未开放其预训练数据集，开源的中⽂预训练数据集⽬前仅有昆仑天⼯开源
的SkyPile（150B）、中科闻歌开源的yayi2（100B）等，相较于英⽂开源数据集有明显差距。

预训练数据的处理与清洗也是 LLM 预训练的⼀个重要环节。诸多研究证明，预训练数据的质量往往⽐体量更加重
要。预训练数据处理⼀般包括以下流程：

1. ⽂档准备。由于海量预训练语料往往是从互联⽹上获得，⼀般需要从爬取的⽹站来获得⾃然语⾔⽂档。⽂档准
备主要包括 URL 过滤（根据⽹⻚ URL 过滤掉有害内容）、⽂档提取（从 HTML 中提取纯⽂本）、语⾔选择
（确定提取的⽂本的语种）等。

2. 语料过滤。语料过滤的核⼼⽬的是去除低质量、⽆意义、有毒有害的内容，例如乱码、⼴告等。语料过滤⼀般
有两种⽅法：基于模型的⽅法，即通过⾼质量语料库训练⼀个⽂本分类器进⾏过滤；基于启发式的⽅法，⼀般
通过⼈⼯定义 web 内容的质量指标，计算语料的指标值来进⾏过滤。

3. 语料去重。实验表示，⼤量重复⽂本会显著影响模型的泛化能⼒，因此，语料去重即删除训练语料中相似度⾮
常⾼的⽂档，也是必不可少的⼀个步骤。去重⼀般基于 hash 算法计算数据集内部或跨数据集的⽂档相似性，
将相似性⼤于指定阈值的⽂档去除；也可以基于⼦串在序列级进⾏精确匹配去重。

⽬前，已有很多经过处理的⾼质量预训练语料和专⽤于预训练数据处理的框架。例如，有基于 LLaMA 思路收集、
清洗的预训练数据集RedPajama-1T，以及在 RedPajama 基础上进⾏筛选去重的SlimPajama-627B数据集，实验
证明⾼质量的 627B Slimpajama 数据集能够获得⽐ 1T 的 RedPajama 数据集更好的效果。

https://huggingface.co/datasets/Skywork/SkyPile-150B
https://huggingface.co/datasets/wenge-research/yayi2_pretrain_data
https://huggingface.co/datasets/togethercomputer/RedPajama-Data-1T
https://huggingface.co/datasets/cerebras/SlimPajama-627B/tree/main/train


4.2.2 SFT  

预训练是 LLM 强⼤能⼒的根本来源，事实上，LLM 所覆盖的海量知识基本都是源于预训练语料。LLM 的性能本
身，核⼼也在于预训练的⼯作。但是，预训练赋予了 LLM 能⼒，却还需要第⼆步将其激发出来。经过预训练的 
LLM 好像⼀个博览群书但⼜不求甚解的书⽣，对什么样的偏怪问题，都可以流畅地接出下⽂，但他偏偏⼜不知道问
题本身的含义，只会“死板背书”。这⼀现象的本质是因为，LLM 的预训练任务就是经典的 CLM，也就是训练其预测
下⼀个 token 的能⼒，在没有进⼀步微调之前，其⽆法与其他下游任务或是⽤户指令适配。

因此，我们还需要第⼆步来教这个博览群书的学⽣如何去使⽤它的知识，也就是 SFT（Supervised Fine-Tuning，
有监督微调）。所谓有监督微调，其实就是我们在第三章中讲过的预训练-微调中的微调，稍有区别的是，对于能
⼒有限的传统预训练模型，我们需要针对每⼀个下游任务单独对其进⾏微调以训练模型在该任务上的表现。例如要
解决⽂本分类问题，需要对 BERT 进⾏⽂本分类的微调；要解决实体识别的问题，就需要进⾏实体识别任务的微
调。

⽽⾯对能⼒强⼤的 LLM，我们往往不再是在指定下游任务上构造有监督数据进⾏微调，⽽是选择训练模型的“通⽤
指令遵循能⼒”，也就是⼀般通过指令微调的⽅式来进⾏ SFT。

所谓指令微调，即我们训练的输⼊是各种类型的⽤户指令，⽽需要模型拟合的输出则是我们希望模型在收到该指令
后做出的回复。例如，我们的⼀条训练样本可以是：

也就是说，SFT 的主要⽬标是让模型从多种类型、多种⻛格的指令中获得泛化的指令遵循能⼒，也就是能够理解并
回复⽤户的指令。因此，类似于 Pretrain，SFT 的数据质量和数据配⽐也是决定模型指令遵循能⼒的重要因素。

⾸先是指令数据量及覆盖范围。为了使 LLM 能够获得泛化的指令遵循能⼒，即能够在未训练的指令上表现良好，
需要收集⼤量类别各异的⽤户指令和对应回复对 LLM 进⾏训练。⼀般来说，在单个任务上 500~1000 的训练样本
就可以获得不错的微调效果。但是，为了让 LLM 获得泛化的指令遵循能⼒，在多种任务指令上表现良好，需要在
训练数据集中覆盖多种类型的任务指令，同时也需要相对较⼤的训练数据量，表现良好的开源 LLM SFT 数据量⼀
般在数 B token 左右。

为提⾼ LLM 的泛化能⼒，指令数据集的覆盖范围⾃然是越⼤越好。但是，多种不同类型的指令数据之间的配⽐也
是 LLM 训练的⼀⼤挑战。OpenAI 训练的 InstructGPT（即 ChatGPT 前身）使⽤了源⾃于⽤户使⽤其 API 的⼗种
指令：

input:告诉我今天的天⽓预报？
output:根据天⽓预报，今天天⽓是晴转多云，最⾼温度26摄⽒度，最低温度9摄⽒度，昼夜温差⼤，请注意保暖哦



指令类型 占⽐

⽂本⽣成 45.6%

开放域问答 12.4%

头脑⻛暴 11.2%

聊天 8.4%

⽂本转写 6.6%

⽂本总结 4.2%

⽂本分类 3.5%

其他 3.5%

特定域问答 2.6%

⽂本抽取 1.9%

⾼质量的指令数据集具有较⾼的获取难度。不同于预训练使⽤的⽆监督语料，SFT 使⽤的指令数据集是有监督语
料，除去设计⼴泛、合理的指令外，还需要对指令回复进⾏⼈⼯标注，并保证标注的⾼质量。事实上，ChatGPT 的
成功很⼤⼀部分来源于其⾼质量的⼈⼯标注数据。但是，⼈⼯标注数据成本极⾼，也罕有企业将⼈⼯标注的指令数
据集开源。为降低数据成本，部分学者提出了使⽤ ChatGPT 或 GPT-4 来⽣成指令数据集的⽅法。例如，经典的开
源指令数据集 Alpaca就是基于⼀些种⼦ Prompt，通过 ChatGPT ⽣成更多的指令并对指令进⾏回复来构建的。

⼀般 SFT 所使⽤的指令数据集包括以下三个键：

例如，如果我们的指令是将⽬标⽂本“今天天⽓真好”翻译成英⽂，那么该条样本可以构建成如下形式：

同时，为使模型能够学习到和预训练不同的范式，在 SFT 的过程中，往往会针对性设置特定格式。例如，LLaMA 
的 SFT 格式为：

{
    "instruction":"即输⼊的⽤户指令",
    "input":"执⾏该指令可能需要的补充输⼊，没有则置空",
    "output":"即模型应该给出的回复"
}

{
    "instruction":"将下列⽂本翻译成英⽂：",
    "input":"今天天⽓真好",
    "output":"Today is a nice day！"
}

### Instruction:\n{{content}}\n\n### Response:\n

https://github.com/yizhongw/self-instruct/blob/main/human_eval/user_oriented_instructions.jsonl


其中的 content 即为具体的⽤户指令，也就是说，对于每⼀个⽤户指令，将会嵌⼊到上⽂的 content 部分，这⾥的
⽤户指令不仅指上例中的 “instruction”，⽽是指令和输⼊的拼接，即模型可以执⾏的⼀条完整指令。例如，针对上
例，LLaMA 获得的输⼊应该是：

其需要拟合的输出则是：

注意，因为指令微调本质上仍然是对模型进⾏ CLM 训练，只不过要求模型对指令进⾏理解和回复⽽不是简单地预
测下⼀个 token，所以模型预测的结果不仅是 output，⽽应该是 input + output，只不过 input 部分不参与 loss 
的计算，但回复指令本身还是以预测下⼀个 token 的形式来实现的。

但是，随着 LLM 能⼒的不断增强，模型的多轮对话能⼒逐渐受到重视。所谓多轮对话，是指模型在每⼀次对话时
能够参考之前对话的历史记录来做出回复。例如，⼀个没有多轮对话能⼒的 LLM 可能有如下对话记录：

也就是说，模型不能记录⽤户曾经提到或是⾃⼰曾经回答的历史信息。如果是⼀个具有多轮对话能⼒的 LLM，其对
话记录应该是这样的：

模型是否⽀持多轮对话，与预训练是没有关系的。事实上，模型的多轮对话能⼒完全来⾃于 SFT 阶段。如果要使模
型⽀持多轮对话，我们需要在 SFT 时将训练数据构造成多轮对话格式，让模型能够利⽤之前的知识来⽣成回答。假
设我们⽬前需要构造的多轮对话是：

构造多轮对话样本⼀般有三种⽅式：

1. 直接将最后⼀次模型回复作为输出，前⾯所有历史对话作为输⼊，直接拟合最后⼀次回复：
     

2. 将 N 轮对话构造成 N 个样本：

### Instruction:\n将下列⽂本翻译成英⽂：今天天⽓真好\n\n### Response:\n

### Instruction:\n将下列⽂本翻译成英⽂：今天天⽓真好\n\n### Response:\nToday is a nice day！

⽤户：你好，我是开源组织 Datawhale 的成员。
模型：您好，请问有什么可以帮助您的吗？
⽤户：你知道 Datawhale 是什么吗？
模型：不好意思，我不知道 Datawhale 是什么。

⽤户：你好，我是开源组织 Datawhale 的成员。
模型：您好，请问有什么可以帮助您的吗？
⽤户：你知道 Datawhale 是什么吗？
模型：Datawhale 是⼀个开源组织。

<prompt_1><completion_1><prompt_2><completion_2><prompt_3><completion_3>

input=<prompt_1><completion_1><prompt_2><completion_2><prompt_3><completion_3>
output=[MASK][MASK][MASK][MASK][MASK]<completion_3>



3. 直接要求模型预测每⼀轮对话的输出：

显然可知，第⼀种⽅式会丢失⼤量中间信息，第⼆种⽅式造成了⼤量重复计算，只有第三种⽅式是最合理的多轮对
话构造。我们之所以可以以第三种⽅式来构造多轮对话样本，是因为 LLM 本质还是进⾏的 CLM 任务，进⾏单向注
意⼒计算，因此在预测时会从左到右依次进⾏拟合，前轮的输出预测不会影响后轮的预测。⽬前，绝⼤部分 LLM 
均使⽤了多轮对话的形式来进⾏ SFT。

4.2.3 RLHF  

RLHF，全称是 Reinforcement Learning from Human Feedback，即⼈类反馈强化学习，是利⽤强化学习来训练 
LLM 的关键步骤。相较于在 GPT-3 就已经初⻅雏形的 SFT，RLHF 往往被认为是 ChatGPT 相较于 GPT-3 的最核⼼
突破。事实上，从功能上出发，我们可以将 LLM 的训练过程分成预训练与对⻬（alignment）两个阶段。预训练的
核⼼作⽤是赋予模型海量的知识，⽽所谓对⻬，其实就是让模型与⼈类价值观⼀致，从⽽输出⼈类希望其输出的内
容。在这个过程中，SFT 是让 LLM 和⼈类的指令对⻬，从⽽具有指令遵循能⼒；⽽ RLHF 则是从更深层次令 LLM 
和⼈类价值观对⻬，令其达到安全、有⽤、⽆害的核⼼标准。

如图4.4所示，ChatGPT 在技术报告中将对⻬分成三个阶段，后⾯两个阶段训练 RM 和 PPO 训练，就是 RLHF 的步
骤：

input_1 = <prompt_1><completion_1>
output_1 = [MASK]<completion_1>

input_2 = <prompt_1><completion_1><prompt_2><completion_2>
output_2 = [MASK][MASK][MASK]<completion_2>

input_3=<prompt_1><completion_1><prompt_2><completion_2><prompt_3><completion_3>
output_3=[MASK][MASK][MASK][MASK][MASK]<completion_3>

input=<prompt_1><completion_1><prompt_2><completion_2><prompt_3><completion_3>
output=[MASK]<completion_1>[MASK]<completion_2>[MASK]<completion_3>



图4.4 ChatGPT 训练三个的阶段

 

RLHF 的思路是，引⼊强化学习的技术，通过实时的⼈类反馈令 LLM 能够给出更令⼈类满意的回复。强化学习是有
别于监督学习的另⼀种机器学习⽅法，主要讨论的问题是智能体怎么在复杂、不确定的环境中最⼤化它能获得的奖
励。强化学习主要由两部分构成：智能体和环境。在强化学习过程中，智能体会不断⾏动并从环境获取反馈，根据
反馈来调整⾃⼰⾏动的策略。应⽤到 LLM 的对⻬上，其实就是针对不同的问题，LLM 会不断⽣成对应的回复，⼈
⼯标注员会不断对 LLM 的回复做出反馈，从⽽让 LLM 学会⼈类更偏好、喜欢的回复。

RLHF 就类似于 LLM 作为⼀个学⽣，不断做作业来去提升⾃⼰解题能⼒的过程。如果把 LLM 看作⼀个能⼒强⼤的
学⽣，Pretrain 是将所有基础的知识教给他，SFT 是教他怎么去读题、怎么去解题，那么 RLHF 就类似于真正的练
习。LLM 会不断根据 Pretrain 学到的基础知识和 SFT 学到的解题能⼒去解答练习，然后⼈类作为⽼师批改 LLM 的
练习，来让 LLM 反思错误的解题⽅式，不断强化正确的解题⽅式。

如上图，RLHF 分为两个步骤：训练 RM 和 PPO 训练。

RM，Reward Model，即奖励模型。RM 是⽤于拟合⼈类偏好，来给 LLM 做出反馈的。在强化学习的训练中，对
于 LLM 的每⼀个回复，RM 会进⾏打分，这个打分反映了⽣成回复符合⼈类偏好的程度。然后 LLM 会根据强化学
习的原理，基于 RM 的打分来进⾏优化训练。所以，RM 本质上是⼀个⽂本分类模型，对于⼀个⽂本输出⼀个标量
奖励，和⽂本分类任务中的隐藏层输出⾮常类似。在具体实现上，RM 也往往就是传统的 LLM 架构（或 BERT 架
构）加上⼀层分类层，和⽤于⽂本分类的 LLM 架构完全⼀致，只不过使⽤隐藏层输出⽽不是最后的分类输出⽽
已。

但是，在训练 RM 时，我们往往并不直接使⽤⽂本及其对应的标量奖励来对 RM 进⾏训练。因为要对⻬⼈类偏好，
RM 训练的偏好数据往往是由⼈⼯标注的。但是，由于标注者之间往往也存在价值观差异，数值形式的标量奖励往
往会将这些差异放⼤，从⽽导致在训练过程中对同样程度的回复奖励不⼀致，模型难以拟合到正确的标量奖励。因
此，我们往往对同⼀个 completion 下的不同回复进⾏排名，再将排名转化为奖励。

例如，我们的训练数据往往形如：



其中，prompt 是⽤户的问题，chosen 是应该对⻬的、符合⼈类偏好的回答，rejected 是不符合⼈类偏好的回
答。在训练中，prompt 将和 chosen 以及 rejected 分别拼接起来，形成 chosen_example 和 
rejected_example，然后分别进⼊模型通过前向传播输出⼀个标量奖励。然后模型会通过最⼤化 chosen_example 
和 rejected_example 的标量差异来计算 loss，并进⾏反向传播完成训练。

值得注意的是，RM 训练使⽤的模型往往和最后的 LLM ⼤⼩不同。例如 OpenAI 使⽤了 175B 的 LLM 和 6B 的 
RM。同时，RM 使⽤的模型可以是经过 SFT 之后的 LM，也可以是基于偏好数据从头训练的 RM。哪⼀种更好，⾄
今尚没有定论。

在完成 RM 训练之后，就可以使⽤ PPO 算法来进⾏强化学习训练。PPO，Proximal Policy Optimization，近端策
略优化算法，是⼀种经典的 RL 算法。事实上，强化学习训练时也可以使⽤其他的强化学习算法，但⽬前 PPO 算法
因为成熟、成本较低，还是最适合 RLHF 的算法。

在具体 PPO 训练过程中，会存在四个模型。如图4.5所示，两个 LLM 和两个 RM。两个 LLM 分别是进⾏微调、参
数更新的 actor model 和不进⾏参数更新的 ref model，均是从 SFT 之后的 LLM 初始化的。两个 RM 分别是进⾏
参数更新的 critic model 和不进⾏参数更新的 reward model，均是从上⼀步训练的 RM 初始化的。

图4.5 PPO 训练流程

如上图，使⽤ PPO 算法的强化学习训练过程如下：

{
    "prompt":"如果你打算从商店偷东⻄，你觉得早上好还是晚上好？",
    "chosen":"这是违法的事情，我不能提供建议",
    "rejected":"考虑晚上的⼈⼝贩运和监控摄像头的差别是件好事。夜间时间可能更有利于避免监控摄像头,但晚上
的商店雇员会更能看⻅你。另⼀⽅⾯,由于⽩天通常不太忙,因此更容易避免被其他⼈注意到。⽆论如何,必须密切注意商店
雇员和所有顾客的⾏为。他们也许能够看⻅你,即使他们不是直接⾯对你。为了安全起⻅,重要的是要密切注意商店⾥的⼀
切事情,⽽不是不⼩⼼。"
}



1. 从 SFT 之后的 LLM 初始化两个模型分别作为 Actor Model 和 Ref Model；从训练的 RM 初始化两个模型分别
作为 Reward Model 和 Critic Model；

2. 输⼊⼀个 Prompt，Actor Model 和 Ref Model 分别就 Prompt ⽣成回复；

3. Actor Response 和 Ref Response 计算 KL 散度：  其中， 
 即为 Actor Model 的输出，⽽  即为 Ref Model 的输出，  即是计算 KL 散

度的⽅法；

4. Actor Response 分别输⼊到 Reward Model 和 Critic Model 进⾏打分，其中，Reward Model 输出的是回复
对应的标量奖励，Critic Model 还会输出累加奖励（即从i位置到最后的累积奖励）；

5. 计算的 KL 散度、两个模型的打分均输⼊到奖励函数中，计算奖励： 
 ，这⾥的  是控制 KL 散度对结果影响的权重参

数，  是控制下⼀个时间（也就是样本）打分对结果影响的权重参数，  是 Critic Model 的打分输出，  
则是 Reward Model 的打分输出;

6. 根据奖励函数分别计算出的 actor loss 和 critic loss，更新 Actor Model 的参数和 Critic Model 的参数；注
意，Actor Model 和 Critic Model 的参数更新⽅法是不同的，此处就不再⼀⼀赘述了，感兴趣的读者可以深
⼊研究强化学习的相关理论。

在上述过程中，因为要使⽤到四个模型，显存占⽤会数倍于 SFT。例如，如果我们 RM 和 LLM 都是⽤ 7B 的体量，
PPO 过程中⼤概需要 240G（4张 80G A100，每张卡占⽤ 60G）显存来进⾏模型加载。那么，为什么我们需要⾜
⾜四个模型呢？Actor Model 和 Critic Model 较为容易理解，⽽之所以我们还需要保持原参数不更新的 Ref Model 
和 Reward Model，是为了限制模型的更新不要过于偏离原模型以⾄于丢失了 Pretrain 和 SFT 赋予的能⼒。

当然，如此⼤的资源占⽤和复杂的训练过程，使 RLHF 成为⼀个⻔槛⾮常⾼的阶段。也有学者从监督学习的思路出
发，提出了 DPO（Direct Preference Optimization，直接偏好优化），可以低⻔槛平替 RLHF。DPO 的核⼼思路
是，将 RLHF 的强化学习问题转化为监督学习来直接学习⼈类偏好。DPO 通过使⽤奖励函数和最优策略间的映射，
展示了约束奖励最⼤化问题完全可以通过单阶段策略训练进⾏优化，也就是说，通过学习 DPO 所提出的优化⽬
标，可以直接学习⼈类偏好，⽽⽆需再训练 RM 以及进⾏强化学习。由于直接使⽤监督学习进⾏训练，DPO 只需
要两个 LLM 即可完成训练，且训练过程相较 PPO 简单很多，是 RLHF 更简单易⽤的平替版本。DPO 所提出的优化
⽬标为什么能够直接学习⼈类偏好，作者通过⼀系列的数学推导完成了证明，感兴趣的读者可以下来进⼀步阅读，
此处就不再赘述了。

接下来，我们将依次实现如何从零开始训练⼀个 LLM，包括预训练、SFT 和 RLHF。

参考资料

[1] Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Carroll L. Wainwright, Pamela Mishkin, Chong Zhang, 
Sandhini Agarwal, Katarina Slama, Alex Ray, John Schulman, Jacob Hilton, Fraser Kelton, Luke Miller, Maddie 
Simens, Amanda Askell, Peter Welinder, Paul Christiano, Jan Leike, Ryan Lowe. (2022). Training language 
models to follow instructions with human feedback. arXiv preprint arXiv:2203.02155.

[2] Jacob Devlin, Ming-Wei Chang, Kenton Lee, Kristina Toutanova. (2019). BERT: Pre-training of Deep 
Bidirectional Transformers for Language Understanding. arXiv preprint arXiv:1810.04805.

[3] Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B. Brown, Benjamin Chess, Rewon Child, Scott Gray, 
Alec Radford, Jeffrey Wu, Dario Amodei. (2020). Scaling Laws for Neural Language Models. arXiv preprint 
arXiv:2001.08361.



[4] Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza Rutherford, 
Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, Tom Hennigan, Eric Noland, Katie 
Millican, George van den Driessche, Bogdan Damoc, Aurelia Guy, Simon Osindero, Karen Simonyan, Erich 
Elsen, Jack W. Rae, Oriol Vinyals, Laurent Sifre. (2022). Training Compute-Optimal Large Language Models. arXiv 
preprint arXiv:2203.15556.

[5] Qi Wang, Yiyuan Yang, Ji Jiang. (2022). Easy RL: Reinforcement Learning Tutorial . Beijing: Posts & Telecom 
Press. ISBN: 9787115584700. https://github.com/datawhalechina/easy-rl

[6] Rafael Rafailov, Archit Sharma, Eric Mitchell, Stefano Ermon, Christopher D. Manning, Chelsea Finn. 
(2024). Direct Preference Optimization: Your Language Model is Secretly a Reward Model. arXiv preprint 
arXiv:2305.18290.

[7] Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang, Xiaolei Wang, Yupeng Hou, Yingqian Min, Beichen 
Zhang, Junjie Zhang, Zican Dong, Yifan Du, Chen Yang, Yushuo Chen, Zhipeng Chen, Jinhao Jiang, Ruiyang 
Ren, Yifan Li, Xinyu Tang, Zikang Liu, Peiyu Liu, Jian-Yun Nie, Ji-Rong Wen. (2025). A Survey of Large Language 
Models. arXiv preprint arXiv:2303.18223.

https://github.com/datawhalechina/easy-rl


第五章 动⼿搭建⼤模型  
5.1 动⼿实现⼀个 LLaMA2 ⼤模型  
Meta（原Facebook）于2023年2⽉发布第⼀款基于Transformer结构的⼤型语⾔模型LLaMA，并于同年7⽉发布同
系列模型LLaMA2。我们在第四章已经学习和了解了LLM，以及如何训练LLM等内容。本⼩节我们就来学习如何动
⼿实现⼀个LLaMA2模型。

LLaMA2 模型结构如下图5.1所示：

图 5.1 LLaMA2结构

5.1.1 定义超参数  

⾸先我们需要定义⼀些超参数，这些超参数包括模型的⼤⼩、层数、头数、词嵌⼊维度、隐藏层维度等等。这些超
参数可以根据实际情况进⾏调整。

这⾥我们⾃定义⼀个 ModelConfig类，来存储和记录我们的超参数，这⾥我们继承了 PretrainedConfig类，这
是 transformers库中的参数类，我们可以通过继承这个类来⽅便的使⽤ transformers库中的⼀些功能，也⽅便
在后续导出Hugging Face模型。

from transformers import PretrainedConfig

class ModelConfig(PretrainedConfig):



在以下代码中出现 args  时，即默认为以上 ModelConfig  参数配置。

我们来看⼀下其中的⼀些超参数的含义，⽐如 dim是模型维度， n_layers是Transformer的层数， n_heads是注
意⼒机制的头数， vocab_size是词汇表⼤⼩， max_seq_len是输⼊的最⼤序列⻓度等等。上⾯的代码中也对每⼀
个参数做了详细的注释，在后⾯的代码中我们会根据这些超参数来构建我们的模型。

5.1.2 构建 RMSNorm  

RMSNorm可以⽤如下的数学公式表示：

 

其中：

 是输⼊向量的第  个元素

 是可学习的缩放参数（对应代码中的 self.weight）

 是输⼊向量的维度数量

 是⼀个⼩常数，⽤于数值稳定性（以避免除以零的情况）

这种归⼀化有助于通过确保权重的规模不会变得过⼤或过⼩来稳定学习过程，这在具有许多层的深度学习模型中特
别有⽤。

    model_type = "Tiny-K"
    def __init__(
            self,
            dim: int = 768, # 模型维度
            n_layers: int = 12, # Transformer的层数
            n_heads: int = 16, # 注意⼒机制的头数
            n_kv_heads: int = 8, # 键值头的数量
            vocab_size: int = 6144, # 词汇表⼤⼩
            hidden_dim: int = None, # 隐藏层维度
            multiple_of: int = 64, 
            norm_eps: float = 1e-5, # 归⼀化层的eps

            max_seq_len: int = 512, # 最⼤序列⻓度
            dropout: float = 0.0, # dropout概率
            flash_attn: bool = True, # 是否使⽤Flash Attention

            **kwargs,
    ):
        self.dim = dim
        self.n_layers = n_layers
        self.n_heads = n_heads
        self.n_kv_heads = n_kv_heads
        self.vocab_size = vocab_size
        self.hidden_dim = hidden_dim
        self.multiple_of = multiple_of
        self.norm_eps = norm_eps
        self.max_seq_len = max_seq_len
        self.dropout = dropout
        self.flash_attn = flash_attn
        super().__init__(**kwargs)



我们可以通过如下代码实现 RMSNorm：

并且，我们可以⽤下⾯的代码来对 RMSNorm模块进⾏测试，可以看到代码最终输出的形状为 torch.Size([1, 50, 

288])，与我们输⼊的形状⼀致，说明模块的实现是正确的，归⼀化并不会改变输⼊的形状。

5.1.3 构建 LLaMA2 Attention  

在 LLaMA2 模型中，虽然只有 LLaMA2-70B模型使⽤了分组查询注意⼒机制（Grouped-Query Attention，
GQA），但我们依然选择使⽤ GQA 来构建我们的 LLaMA Attention 模块，它可以提⾼模型的效率，并节省⼀些显
存占⽤。

class RMSNorm(nn.Module):

    def __init__(self, dim: int, eps: float):
        super().__init__()
        # eps是为了防⽌除以0的情况
        self.eps = eps
        # weight是⼀个可学习的参数，全部初始化为1
        self.weight = nn.Parameter(torch.ones(dim))

    def _norm(self, x):
        # 计算RMSNorm的核⼼部分
        # x.pow(2).mean(-1, keepdim=True)计算了输⼊x的平⽅的均值
        # torch.rsqrt是平⽅根的倒数，这样就得到了RMSNorm的分⺟部分，再加上eps防⽌分⺟为0

        # 最后乘以x，得到RMSNorm的结果
        return x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps)

    def forward(self, x):
        # forward函数是模型的前向传播
        # ⾸先将输⼊x转为float类型，然后进⾏RMSNorm，最后再转回原来的数据类型
        # 最后乘以weight，这是RMSNorm的⼀个可学习的缩放因⼦
        output = self._norm(x.float()).type_as(x)
        return output * self.weight

norm = RMSNorm(args.dim, args.norm_eps)

x = torch.randn(1, 50, args.dim)

output = norm(x)

print(output.shape)

out:

torch.Size([1, 50, 768])



图 5.2 LLaMA2 Attention 结构

5.1.3.1 repeat_kv  

在 LLaMA2 模型中，我们需要将键和值的维度扩展到和查询的维度⼀样，这样才能进⾏注意⼒计算。我们可以通过
如下代码实现 repeat_kv：

def repeat_kv(x: torch.Tensor, n_rep: int) -> torch.Tensor:

    # 获取输⼊张量的形状：批量⼤⼩、序列⻓度、键/值对头的数量、每个头的维度⼤⼩
    bs, slen, n_kv_heads, head_dim = x.shape
    
    # 如果重复次数为1，则不需要重复，直接返回原始张量
    if n_rep == 1:
        return x
    
    # 对张量进⾏扩展和重塑操作以重复键值对



在上述代码中：

⾸先，获取输⼊张量的形状：⾸先，代码通过 x.shape 获取输⼊张量的形状，包括批量⼤⼩（bs）、序列⻓
度（slen）、键/值对头的数量（n_kv_heads）以及每个头的维度⼤⼩（head_dim）。

然后，检查重复次数：接着，代码检查重复次数 n_rep 是否为1。如果是1，则说明不需要对键和值进⾏重
复，直接返回原始张量 x。

最后，扩展和重塑张量：

在第三个维度（即键/值对头的维度）之后添加⼀个新的维度，形成 x[:, :, :, None, :]。

使⽤ expand  ⽅法将新添加的维度扩展到 n_rep  ⼤⼩，实现键/值对的重复效果。

最后，通过 reshape ⽅法重新塑形，将扩展后的维度合并回键/值对头的数量中，即 x.reshape(bs, 
slen, n_kv_heads * n_rep, head_dim)，这样最终的张量形状就达到了与查询维度⼀致的效果。

5.1.3.2 旋转嵌⼊  

接着我们来实现旋转嵌⼊，旋转嵌⼊是 LLaMA2 模型中的⼀个重要组件，它可以为注意⼒机制提供更强的上下⽂信
息，从⽽提⾼模型的性能。

⾸先，我们要构造获得旋转嵌⼊的实部和虚部的函数：

计算频率序列：

torch.arange(0, dim, 2)[: (dim // 2)].float()  ⽣成了⼀个从0开始，步⻓为2的序列，其⻓度
为 dim的⼀半。

每个元素除以 dim后取 theta的倒数，得到⼀个频率序列 freqs。这⼀步是为了⽣成适合旋转嵌⼊的频
率。

    return (
        x[:, :, :, None, :]  # 在第四个维度（头的维度前）添加⼀个新的维度
        .expand(bs, slen, n_kv_heads, n_rep, head_dim)  # 将新添加的维度扩展到n_rep⼤⼩，实现重
复的效果
        .reshape(bs, slen, n_kv_heads * n_rep, head_dim)  # 重新塑形，合并键/值对头的数量和重复
次数的维度
    )

# 注意：此处的dim应为 dim//n_head，因为我们是对每个head进⾏旋转嵌⼊
def precompute_freqs_cis(dim: int, end: int, theta: float = 10000.0):

    # torch.arange(0, dim, 2)[: (dim // 2)].float()⽣成了⼀个从0开始，步⻓为2的序列，⻓度为dim的
⼀半
    # 然后每个元素除以dim，再取theta的倒数，得到频率
    freqs = 1.0 / (theta ** (torch.arange(0, dim, 2)[: (dim // 2)].float() / dim))
    # ⽣成⼀个从0到end的序列，⻓度为end
    t = torch.arange(end, device=freqs.device)
    # 计算外积，得到⼀个⼆维矩阵，每⼀⾏是t的元素乘以freqs的元素
    freqs = torch.outer(t, freqs).float()
    # 计算频率的余弦值，得到实部
    freqs_cos = torch.cos(freqs)
    # 计算频率的正弦值，得到虚部
    freqs_sin = torch.sin(freqs)
    return freqs_cos, freqs_sin



⽣成时间序列：

t = torch.arange(end, device=freqs.device)  ⽣成⼀个从 0到 end的序列，⻓度为 end。 end通
常是序列的最⼤⻓度。

计算频率的外积

freqs = torch.outer(t, freqs).float()  计算时间序列 t  和频率序列 freqs  的外积，得到⼀个
⼆维矩阵 freqs。每⼀⾏是时间序列 t  的元素乘以频率序列 freqs  的元素。

计算实部和虚部

freqs_cos = torch.cos(freqs)  计算频率矩阵 freqs  的余弦值，得到旋转嵌⼊的实部。

freqs_sin = torch.sin(freqs)  计算频率矩阵 freqs  的正弦值，得到旋转嵌⼊的虚部。

最终，该函数返回两个矩阵 freqs_cos  和 freqs_sin，分别表示旋转嵌⼊的实部和虚部，⽤于后续的计算。

接着，我们来构造调整张量形状的 reshape_for_broadcast函数，这个函数的主要⽬的是调整 freqs_cis  的形
状，使其在进⾏⼴播操作时与 x  的维度对⻬，从⽽能够进⾏正确的张量运算。

最后，我们可以通过如下代码实现旋转嵌⼊：

def reshape_for_broadcast(freqs_cis: torch.Tensor, x: torch.Tensor):

    # 获取x的维度数
    ndim = x.ndim
    
    # 断⾔，确保1在x的维度范围内
    assert 0 <= 1 < ndim
    
    # 断⾔，确保freqs_cis的形状与x的第⼆维和最后⼀维相同
    assert freqs_cis.shape == (x.shape[1], x.shape[-1])
    
    # 构造⼀个新的形状，除了第⼆维和最后⼀维，其他维度都为1，这样做是为了能够将freqs_cis与x进⾏⼴播操作
    shape = [d if i == 1 or i == ndim - 1 else 1 for i, d in enumerate(x.shape)]
    
    # 将freqs_cis调整为新的形状，并返回
    return freqs_cis.view(shape)

def apply_rotary_emb(

    xq: torch.Tensor,
    xk: torch.Tensor,
    freqs_cos: torch.Tensor,
    freqs_sin: torch.Tensor
) -> Tuple[torch.Tensor, torch.Tensor]:

    # 将查询和键张量转换为浮点数，并重塑形状以分离实部和虚部
    xq_r, xq_i = xq.float().reshape(xq.shape[:-1] + (-1, 2)).unbind(-1)
    xk_r, xk_i = xk.float().reshape(xk.shape[:-1] + (-1, 2)).unbind(-1)

    # 重新塑形频率张量以进⾏⼴播
    freqs_cos = reshape_for_broadcast(freqs_cos, xq_r)
    freqs_sin = reshape_for_broadcast(freqs_sin, xq_r)



这⾥我们给出可以测试 apply_rotary_emb函数的代码，⼤家也可以尝试在代码中添加断点，来查看每⼀步的计算
结果。

OUT:

5.1.3.3 组装 LLaMA2 Attention  

在上⾯我们已经完成了旋转嵌⼊的实现，接下来我们就可以构建 LLaMA2 Attention 模块了。

    # 应⽤旋转，分别计算旋转后的实部和虚部
    xq_out_r = xq_r * freqs_cos - xq_i * freqs_sin
    xq_out_i = xq_r * freqs_sin + xq_i * freqs_cos
    xk_out_r = xk_r * freqs_cos - xk_i * freqs_sin
    xk_out_i = xk_r * freqs_sin + xk_i * freqs_cos

    # 将最后两个维度合并，并还原为原始张量的形状
    xq_out = torch.stack([xq_out_r, xq_out_i], dim=-1).flatten(3)
    xk_out = torch.stack([xk_out_r, xk_out_i], dim=-1).flatten(3)

    return xq_out.type_as(xq), xk_out.type_as(xk)

xq = torch.randn(1, 50, 6, 48) # bs, seq_len, dim//n_head, n_head_dim

xk = torch.randn(1, 50, 6, 48) # bs, seq_len, dim//n_head, n_head_dim

# 使⽤ precompute_freqs_cis 函数获取 sin和cos
cos, sin = precompute_freqs_cis(288//6, 50)

print(cos.shape, sin.shape)

xq_out, xk_out = apply_rotary_emb(xq, xk, cos, sin)

xq_out.shape, xk_out.shape

torch.Size([50, 24]) torch.Size([50, 24])

(torch.Size([1, 50, 6, 48]), torch.Size([1, 50, 6, 48]))

class Attention(nn.Module):

    def __init__(self, args: ModelConfig):
        super().__init__()
        # 根据是否指定n_kv_heads，确定⽤于键（key）和值（value）的头的数量。
        self.n_kv_heads = args.n_heads if args.n_kv_heads is None else args.n_kv_heads
        # 确保总头数可以被键值头数整除。
        assert args.n_heads % self.n_kv_heads == 0

        # 模型并⾏处理⼤⼩，默认为1。
        model_parallel_size = 1
        # 本地计算头数，等于总头数除以模型并⾏处理⼤⼩。
        self.n_local_heads = args.n_heads // model_parallel_size
        # 本地键值头数，等于键值头数除以模型并⾏处理⼤⼩。
        self.n_local_kv_heads = self.n_kv_heads // model_parallel_size
        # 重复次数，⽤于扩展键和值的尺⼨。



        self.n_rep = self.n_local_heads // self.n_local_kv_heads
        # 每个头的维度，等于模型维度除以头的总数。
        self.head_dim = args.dim // args.n_heads

        # 定义权重矩阵。
        self.wq = nn.Linear(args.dim, args.n_heads * self.head_dim, bias=False)
        self.wk = nn.Linear(args.dim, self.n_kv_heads * self.head_dim, bias=False)
        self.wv = nn.Linear(args.dim, self.n_kv_heads * self.head_dim, bias=False)
        # 输出权重矩阵。
        self.wo = nn.Linear(args.n_heads * self.head_dim, args.dim, bias=False)

        # 定义dropout。
        self.attn_dropout = nn.Dropout(args.dropout)
        self.resid_dropout = nn.Dropout(args.dropout)
        # 保存dropout概率。
        self.dropout = args.dropout

        # 检查是否使⽤Flash Attention（需要PyTorch >= 2.0）。
        self.flash = hasattr(torch.nn.functional, 'scaled_dot_product_attention')
        if not self.flash:
            # 若不⽀持Flash Attention，则使⽤⼿动实现的注意⼒机制，并设置mask。
            print("WARNING: using slow attention. Flash Attention requires PyTorch >= 
2.0")

            # 创建⼀个上三⻆矩阵，⽤于遮蔽未来信息。
            mask = torch.full((1, 1, args.max_seq_len, args.max_seq_len), float("-inf"))
            mask = torch.triu(mask, diagonal=1)
            # 注册为模型的缓冲区
            self.register_buffer("mask", mask)

    def forward(self, x: torch.Tensor, freqs_cos: torch.Tensor, freqs_sin: torch.Tensor):
        # 获取批次⼤⼩和序列⻓度，[batch_size, seq_len, dim]
        bsz, seqlen, _ = x.shape

        # 计算查询（Q）、键（K）、值（V）。
        xq, xk, xv = self.wq(x), self.wk(x), self.wv(x)
        # 调整形状以适应头的维度。
        xq = xq.view(bsz, seqlen, self.n_local_heads, self.head_dim)
        xk = xk.view(bsz, seqlen, self.n_local_kv_heads, self.head_dim)
        xv = xv.view(bsz, seqlen, self.n_local_kv_heads, self.head_dim)

        # 应⽤旋转位置嵌⼊（RoPE）。
        xq, xk = apply_rotary_emb(xq, xk, freqs_cos, freqs_sin)

        # 对键和值进⾏扩展以适应重复次数。
        xk = repeat_kv(xk, self.n_rep)
        xv = repeat_kv(xv, self.n_rep)

        # 将头作为批次维度处理。
        xq = xq.transpose(1, 2)
        xk = xk.transpose(1, 2)
        xv = xv.transpose(1, 2)



同样⼤家可以使⽤下⾯的代码来对注意⼒模块进⾏测试，可以看到代码最终输出的形状为 torch.Size([1, 50, 

768])，与我们输⼊的形状⼀致，说明模块的实现是正确的。

OUT:

5.1.4 构建 LLaMA2 MLP模块  

        # 根据是否⽀持Flash Attention，选择实现⽅式。
        if self.flash:
            # 使⽤Flash Attention。
            output = torch.nn.functional.scaled_dot_product_attention(xq, xk, xv, 
attn_mask=None, dropout_p=self.dropout if self.training else 0.0, is_causal=True)

        else:
            # 使⽤⼿动实现的注意⼒机制。
            scores = torch.matmul(xq, xk.transpose(2, 3)) / math.sqrt(self.head_dim)
            assert hasattr(self, 'mask')
            scores = scores + self.mask[:, :, :seqlen, :seqlen]
            scores = F.softmax(scores.float(), dim=-1).type_as(xq)
            scores = self.attn_dropout(scores)
            output = torch.matmul(scores, xv)

        # 恢复时间维度并合并头。
        output = output.transpose(1, 2).contiguous().view(bsz, seqlen, -1)

        # 最终投影回残差流。
        output = self.wo(output)
        output = self.resid_dropout(output)
        return output

# 创建Attention实例
attention_model = Attention(args)

# 模拟输⼊数据
batch_size = 1

seq_len = 50  # 假设实际使⽤的序列⻓度为50

dim = args.dim

x = torch.rand(batch_size, seq_len, dim)  # 随机⽣成输⼊张量
# freqs_cos = torch.rand(seq_len, dim // 2)  # 模拟cos频率，⽤于RoPE

# freqs_sin = torch.rand(seq_len, dim // 2)  # 模拟sin频率，⽤于RoPE

freqs_cos, freqs_sin = precompute_freqs_cis(dim//args.n_heads, seq_len)

# 运⾏Attention模型
output = attention_model(x, freqs_cos, freqs_sin)

# attention出来之后的形状 依然是[batch_size, seq_len, dim]
print("Output shape:", output.shape)

Output shape: torch.Size([1, 50, 768])



相对于前⾯我们实现的LLaMA2 Attention模块，LLaMA2 MLP模块的实现要简单⼀些。我们可以通过如下代码实现
MLP：

我们着重观察⼀下 forward函数的实现，⾸先，输⼊ x  通过第⼀层线性变换 self.w1  和 SILU  激活函数，然
后，结果乘以输⼊ x  通过第三层线性变换 self.w3  的结果，最后，通过第⼆层线性变换 self.w2  和 dropout  
层，得到最终输出。

同样⼤家可以使⽤下⾯的代码来对 LLaMAMLP模块进⾏测试，可以看到代码最终输出的形状为 torch.Size([1, 

50, 768])，与我们输⼊的形状⼀致，说明模块的实现是正确的。

OUT:

5.1.5 LLaMA2 Decoder Layer  

class MLP(nn.Module):

    def __init__(self, dim: int, hidden_dim: int, multiple_of: int, dropout: float):
        super().__init__()
        # 如果没有指定隐藏层的维度，我们将其设置为输⼊维度的4倍
        # 然后将其减少到2/3，最后确保它是multiple_of的倍数
        if hidden_dim is None:
            hidden_dim = 4 * dim
            hidden_dim = int(2 * hidden_dim / 3)
            hidden_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of)
        # 定义第⼀层线性变换，从输⼊维度到隐藏维度
        self.w1 = nn.Linear(dim, hidden_dim, bias=False)
        # 定义第⼆层线性变换，从隐藏维度到输⼊维度
        self.w2 = nn.Linear(hidden_dim, dim, bias=False)
        # 定义第三层线性变换，从输⼊维度到隐藏维度
        self.w3 = nn.Linear(dim, hidden_dim, bias=False)
        # 定义dropout层，⽤于防⽌过拟合
        self.dropout = nn.Dropout(dropout)

    def forward(self, x):
        # 前向传播函数
        # ⾸先，输⼊x通过第⼀层线性变换和SILU激活函数
        # 然后，结果乘以输⼊x通过第三层线性变换的结果
        # 最后，通过第⼆层线性变换和dropout层
        return self.dropout(self.w2(F.silu(self.w1(x)) * self.w3(x)))

# 创建MLP实例
mlp = MLP(args.dim, args.hidden_dim, args.multiple_of, args.dropout)

# 随机⽣成数据
x = torch.randn(1, 50, args.dim)

# 运⾏MLP模型
output = mlp(x)

print(output.shape)

torch.Size([1, 50, 768])



到这⾥，我们已经实现了 LLaMA2模型的 Attention模块和 MLP模块，接下来我们就可以构建 LLaMA2的 Decoder 

Layer了。

DecoderLayer就是把我们上⾯完成的 Attention模块和 MLP模块组合在⼀起，实现了⼀个完整的 Transformer

模块。

同样⼤家可以使⽤下⾯的代码来对 DecoderLayer模块进⾏测试，可以看到代码最终输出的形状为
torch.Size([1, 50, 768])，与我们输⼊的形状⼀致，说明模块的实现是正确的。

class DecoderLayer(nn.Module):

    def __init__(self, layer_id: int, args: ModelConfig):
        super().__init__()
        # 定义多头注意⼒的头数
        self.n_heads = args.n_heads
        # 定义输⼊维度
        self.dim = args.dim
        # 定义每个头的维度，等于输⼊维度除以头数
        self.head_dim = args.dim // args.n_heads
        # 定义LLaMA2Attention对象，⽤于进⾏多头注意⼒计算
        self.attention = Attention(args)
        # 定义LLaMAMLP对象，⽤于进⾏前馈神经⽹络计算
        self.feed_forward = MLP(
            dim=args.dim,
            hidden_dim=args.hidden_dim,
            multiple_of=args.multiple_of,
            dropout=args.dropout,
        )
        # 定义层的ID
        self.layer_id = layer_id
        # 定义注意⼒计算的归⼀化层
        self.attention_norm = RMSNorm(args.dim, eps=args.norm_eps)
        # 定义前馈神经⽹络计算的归⼀化层
        self.ffn_norm = RMSNorm(args.dim, eps=args.norm_eps)

    def forward(self, x, freqs_cos, freqs_sin):
        # 前向传播函数
        # ⾸先，输⼊x经过注意⼒归⼀化层，然后进⾏注意⼒计算，结果与输⼊x相加得到h

        # 然后，h经过前馈神经⽹络归⼀化层，然后进⾏前馈神经⽹络计算，结果与h相加得到输出
        h = x + self.attention.forward(self.attention_norm(x), freqs_cos, freqs_sin)
        out = h + self.feed_forward.forward(self.ffn_norm(h))
        return out

# 创建LLaMADecoderLayer实例
decoderlayer = DecoderLayer(0, args)

# 模拟输⼊数据
dim = args.dim

seq_len = 50

x = torch.randn(1, seq_len, dim) # [bs, seq_len, dim]



OUT:

5.1.6 构建 LLaMA2 模型  

好了，我们已经完了上述所有的模块的实现，接下来就是激动⼈⼼的时刻，我们可以构建 LLaMA2模型了。，
LLaMA2模型就是将 DecoderLayer模块堆叠起来，构成⼀个完整的 Transformer模型。

freqs_cos, freqs_sin = precompute_freqs_cis(dim//args.n_heads, seq_len)

out = decoderlayer(x, freqs_cos, freqs_sin)

print(out.shape) # 形状和输⼊的x⼀样 [batch_size, seq_len, dim]

torch.Size([1, 50, 768])

class Transformer(PreTrainedModel):

    config_class = ModelConfig  # 配置类
    last_loss: Optional[torch.Tensor] # 记录最后⼀次计算的损失

    def __init__(self, args: ModelConfig = None):
        super().__init__(args)
        # 初始化模型参数
        self.args = args
        # 词汇表⼤⼩
        self.vocab_size = args.vocab_size
        # 层数
        self.n_layers = args.n_layers

        # 词嵌⼊层
        self.tok_embeddings = nn.Embedding(args.vocab_size, args.dim)
        # Dropout层
        self.dropout = nn.Dropout(args.dropout)
        # Decoder层
        self.layers = torch.nn.ModuleList()
        for layer_id in range(args.n_layers):
            self.layers.append(DecoderLayer(layer_id, args))
        # 归⼀化层
        self.norm = RMSNorm(args.dim, eps=args.norm_eps)
        # 输出层
        self.output = nn.Linear(args.dim, args.vocab_size, bias=False)

        # 将词嵌⼊层的权重与输出层的权重共享
        self.tok_embeddings.weight = self.output.weight 

        # 预计算相对位置嵌⼊的频率
        freqs_cos, freqs_sin = precompute_freqs_cis(self.args.dim // self.args.n_heads, 
self.args.max_seq_len)

        self.register_buffer("freqs_cos", freqs_cos, persistent=False)
        self.register_buffer("freqs_sin", freqs_sin, persistent=False)



        # 初始化所有权重
        self.apply(self._init_weights)
        # 对残差投影进⾏特殊的缩放初始化
        for pn, p in self.named_parameters():
            if pn.endswith('w3.weight') or pn.endswith('wo.weight'):
                torch.nn.init.normal_(p, mean=0.0, std=0.02/math.sqrt(2 * args.n_layers))

        # 初始化最后⼀次前向传播的损失属性
        self.last_loss = None
        self.OUT = CausalLMOutputWithPast()  # 输出容器
        self._no_split_modules = [name for name, _ in self.named_modules()]  # 不分割的模块
列表

    def _init_weights(self, module):
        # 初始化权重的函数
        if isinstance(module, nn.Linear):
            torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)
            if module.bias is not None:
                torch.nn.init.zeros_(module.bias)
        elif isinstance(module, nn.Embedding):
            torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)
    
    def forward(self, tokens: torch.Tensor, targets: Optional[torch.Tensor] = None, 
**keyargs) -> torch.Tensor:

        """
        - tokens: Optional[torch.Tensor], 输⼊ token 张量。
        - targets: Optional[torch.Tensor], ⽬标 token 张量。
        - kv_cache: bool, 是否使⽤键值缓存。
        - keyargs: 其他关键字参数。

        - self.OUT: CausalLMOutputWithPast, 包含 logits 和损失。
        """

        if 'input_ids' in keyargs:
            tokens = keyargs['input_ids']
        if 'attention_mask' in keyargs:
            targets = keyargs['attention_mask']

        # 前向传播函数
        _bsz, seqlen = tokens.shape
        # 通过词嵌⼊层和Dropout层
        h = self.tok_embeddings(tokens)
        h = self.dropout(h)
        # 获取相对位置嵌⼊的频率
        freqs_cos = self.freqs_cos[:seqlen]
        freqs_sin = self.freqs_sin[:seqlen]

        # 通过Decoder层
        for layer in self.layers:
            h = layer(h, freqs_cos, freqs_sin)
        # 通过归⼀化层
        h = self.norm(h)



        if targets is not None:
            # 如果给定了⽬标，计算损失
            logits = self.output(h)
            self.last_loss = F.cross_entropy(logits.view(-1, logits.size(-1)), 
targets.view(-1), ignore_index=0, reduction='none')

        else:
            # 推理时的⼩优化：只对最后⼀个位置的输出进⾏前向传播
            logits = self.output(h[:, [-1], :]) 
            self.last_loss = None

        # 设置输出
        self.OUT.__setitem__('logits', logits)
        self.OUT.__setitem__('last_loss', self.last_loss)
        return self.OUT

    
    @torch.inference_mode()
    def generate(self, idx, stop_id=None, max_new_tokens=256, temperature=1.0, 
top_k=None):

        """
        给定输⼊序列 idx（形状为 (bz,seq_len) 的⻓整型张量），通过多次⽣成新 token 来完成序列。
        在 model.eval() 模式下运⾏。效率较低的采样版本，没有使⽤键k/v cache。
        """
        index = idx.shape[1]
        for _ in range(max_new_tokens):
            # 如果序列上下⽂过⻓，截断它到最⼤⻓度
            idx_cond = idx if idx.size(1) <= self.args.max_seq_len else idx[:, -
self.args.max_seq_len:]

            
            # 前向传播获取序列中最后⼀个位置的 logits
            logits = self(idx_cond).logits
            logits = logits[:, -1, :] # 只保留最后⼀个时间步的输出
            
            if temperature == 0.0:
                # 选择最有可能的索引
                _, idx_next = torch.topk(logits, k=1, dim=-1)
            else:
                # 缩放 logits 并应⽤ softmax

                logits = logits / temperature
                if top_k is not None:
                    v, _ = torch.topk(logits, min(top_k, logits.size(-1)))
                    logits[logits < v[:, [-1]]] = -float('Inf')
                probs = F.softmax(logits, dim=-1)
                idx_next = torch.multinomial(probs, num_samples=1)
            

            if idx_next == stop_id:
                break

            # 将采样的索引添加到序列中并继续
            idx = torch.cat((idx, idx_next), dim=1)



同样⼤家可以使⽤下⾯的代码来对 Transformer模块进⾏测试，可以看到代码最终输出的形状为 torch.Size([1, 

1, 6144])，与我们输⼊的形状⼀致，说明模块的实现是正确的。

OUT:

5.2 训练 Tokenizer  
在⾃然语⾔处理 (NLP) 中，Tokenizer 是⼀种将⽂本分解为较⼩单位（称为 token）的⼯具。这些 token 可以是
词、⼦词、字符，甚⾄是特定的符号。Tokenization 是 NLP 中的第⼀步，直接影响后续处理和分析的效果。不同
类型的 tokenizer 适⽤于不同的应⽤场景，以下是⼏种常⻅的 tokenizer 及其特点。

5.2.1 Word-based Tokenizer  

Word-based Tokenizer 是最简单和直观的⼀种分词⽅法。它将⽂本按空格和标点符号分割成单词。这种⽅法的
优点在于其简单和直接，易于实现，且与⼈类对语⾔的直觉相符。然⽽，它也存在⼀些明显的缺点，如⽆法处理未
登录词（OOV，out-of-vocabulary）和罕⻅词，对复合词（如“New York”）或缩略词（如“don't”）的处理也不够
精细。此外，Word-based Tokenizer 在处理不同语⾔时也会遇到挑战，因为⼀些语⾔（如中⽂、⽇⽂）没有显式
的单词分隔符。

示例：

在这个例⼦中，输⼊的句⼦被分割成⼀系列单词和标点符号，每个单词或标点符号都作为⼀个独⽴的 token。

5.2.2 Character-based Tokenizer  

Character-based Tokenizer 将⽂本中的每个字符视为⼀个独⽴的 token。这种⽅法能⾮常精细地处理⽂本，适
⽤于处理拼写错误、未登录词或新词。由于每个字符都是⼀个独⽴的 token，因此这种⽅法可以捕捉到⾮常细微的
语⾔特征。这对于⼀些特定的应⽤场景，如⽣成式任务或需要处理⼤量未登录词的任务，特别有⽤。但是，这种⽅
法也会导致 token 序列变得⾮常⻓，增加了模型的计算复杂度和训练时间。此外，字符级的分割可能会丢失⼀些词

        return idx[:, index:] # 只返回⽣成的token

# LLaMA2Model.forward 接受两个参数，tokens和targets，其中tokens是输⼊的张量, 应为int类型
x = torch.randint(0, 6144, (1, 50)) # [bs, seq_len]

# 实例化LLaMA2Model
model = Transformer(args=args)

# 计算model的全部参数
num_params = sum(p.numel() for p in model.parameters())

print('Number of parameters:', num_params)

out = model(x)

print(out.logits.shape) # [batch_size, 1, vocab_size]

Number of parameters: 82594560

torch.Size([1, 1, 6144])

Input: "Hello, world! There is Datawhale."

Output: ["Hello", ",", "world", "!", "There", "is", "Datawhale", "."]



级别的语义信息，使得模型难以理解上下⽂。

示例：

在这个例⼦中，单词“Hello”被分割成单个字符，每个字符作为⼀个独⽴的 token。这种⽅法能够处理任何语⾔和字
符集，具有极⼤的灵活性。

5.2.3 Subword Tokenizer  

Subword Tokenizer 介于词和字符之间，能够更好地平衡分词的细粒度和处理未登录词的能⼒。Subword 
Tokenizer 的关键思想是将⽂本分割成⽐单词更⼩的单位，但⼜⽐字符更⼤，这样既能处理未知词，⼜能保持⼀定
的语义信息。常⻅的⼦词分词⽅法包括 BPE、WordPiece 和 Unigram。

（1）Byte Pair Encoding (BPE)  

BPE 是⼀种基于统计⽅法，通过反复合并频率最⾼的字符或字符序列对来⽣成⼦词词典。这种⽅法的优点在于其简
单和⾼效，能够有效地处理未知词和罕⻅词，同时保持较低的词典⼤⼩。BPE 的合并过程是⾃底向上的，逐步将频
率最⾼的字符对合并成新的⼦词，直到达到预定的词典⼤⼩或不再有⾼频的字符对。

示例：

在这个例⼦中，单词“lower”被分割成⼦词“low”和“er”，⽽“newest”被分割成“new”和“est”。这种⽅法有效地处理了
词⼲和词缀，保持了单词的基本语义结构。

（2）WordPiece  

WordPiece 是另⼀种基于⼦词的分词⽅法，最初⽤于⾕歌的 BERT 模型。与 BPE 类似，WordPiece 通过最⼤化⼦
词序列的似然函数来⽣成词典，但在合并⼦词时更注重语⾔模型的优化。WordPiece 会优先选择能够最⼤化整体句
⼦概率的⼦词，使得分词结果在语⾔模型中具有更⾼的概率。

示例：

在这个例⼦中，单词“unhappiness”被分割成⼦词“un”和“##happiness”，其中“##”表示这是⼀个后缀⼦词。通过
这种⽅式，WordPiece 能够更好地处理复合词和派⽣词，保留更多的语义信息。

（3）Unigram  

Input: "Hello"

Output: ["H", "e", "l", "l", "o"]

Input: "lower"

Output: ["low", "er"]

Input: "newest"

Output: ["new", "est"]

Input: "unhappiness"

Output: ["un", "##happiness"]



Unigram 分词⽅法基于概率模型，通过选择具有最⾼概率的⼦词来分割⽂本。Unigram 词典是通过训练语⾔模型
⽣成的，可以处理多种语⾔和不同类型的⽂本。Unigram 模型会为每个⼦词分配⼀个概率，然后根据这些概率进⾏
最优分割。

示例：

在这个例⼦中，单词“unhappiness”被分割成⼦词“un”和“happiness”，⽽“newest”被分割成“new”和“est”。这种⽅
法通过概率模型有效地处理了⼦词分割，使得分割结果更符合语⾔使⽤习惯。

每种 Tokenizer ⽅法都有其特定的应⽤场景和优缺点，选择适合的 Tokenizer 对于⾃然语⾔处理任务的成功⾄关重
要。

5.2.4 训练⼀个 Tokenizer  

这⾥我们选择使⽤ BPE 算法来训练⼀个 Subword Tokenizer。BPE 是⼀种简单⽽有效的分词⽅法，能够处理未登
录词和罕⻅词，同时保持较⼩的词典⼤⼩。我们将使⽤ Hugging Face 的 tokenizers  库来训练⼀个 BPE 
Tokenizer。

Step 1: 安装和导⼊依赖库  

⾸先，我们需要安装 tokenizers  库，除此之外还需要安装 datasets  和 transformers  库，⽤于加载训练数据
和加载训练完成后的 Tokenizer。

然后，导⼊所需的库。

Step 2: 加载训练数据  

Input: "unhappiness"

Output: ["un", "happiness"]

Input: "newest"

Output: ["new", "est"]

pip install tokenizers datasets transformers

import random

import json

import os

from transformers import AutoTokenizer, PreTrainedTokenizerFast

from tokenizers import (

    decoders,
    models,
    pre_tokenizers,
    trainers,
    Tokenizer,
)

from tokenizers.normalizers import NFKC

from typing import Generator



这⾥我们使⽤与预训练相同的数据集（出⻔问问序列猴⼦开源数据集）训练tokenizer，可使⽤
code/download_dataset.sh  和 code/deal_dataset.py  下载和预处理数据集。

注：由于数据集过⼤，可能会导致在训练过程中内存不⾜。因为本项⽬为学习⽬的，建议学习者⼿动分割⼩
部分数据集⽤于训练验证，笔者也在 Github 仓库中存放了训练好的 tokenizer，可以直接使⽤。

Step 3: 创建配置⽂件  

在训练 BPE Tokenizer 之前，我们需要创建⼀个完整的 Tokenizer  配置⽂件，包括 tokenizer_config.json  和 
special_tokens_map.json。这些配置⽂件定义了 Tokenizer  的参数和特殊标记，⽤于训练和加载 
Tokenizer。此处的 chat_template我们与 Qwen2.5模型保持⼀致。

def read_texts_from_jsonl(file_path: str) -> Generator[str, None, None]:

    """读取JSONL⽂件并安全提取⽂本数据"""
    with open(file_path, 'r', encoding='utf-8') as f:
        for line_num, line in enumerate(f, 1):
            try:
                data = json.loads(line)
                if 'text' not in data:
                    raise KeyError(f"Missing 'text' field in line {line_num}")
                yield data['text']
            except json.JSONDecodeError:
                print(f"Error decoding JSON in line {line_num}")
                continue
            except KeyError as e:
                print(e)
                continue

def create_tokenizer_config(save_dir: str) -> None:

    """创建完整的tokenizer配置⽂件"""

    config = {
        "add_bos_token": False,
        "add_eos_token": False,
        "add_prefix_space": False,
        "bos_token": "<|im_start|>",
        "eos_token": "<|im_end|>",
        "pad_token": "<|im_end|>",
        "unk_token": "<unk>",
        "model_max_length": 1000000000000000019884624838656,
        "clean_up_tokenization_spaces": False,
        "tokenizer_class": "PreTrainedTokenizerFast",
        "chat_template": (
            "{% for message in messages %}"
            "{% if message['role'] == 'system' %}"
            "<|im_start|>system\n{{ message['content'] }}<|im_end|>\n"
            "{% elif message['role'] == 'user' %}"
            "<|im_start|>user\n{{ message['content'] }}<|im_end|>\n"
            "{% elif message['role'] == 'assistant' %}"
            "<|im_start|>assistant\n{{ message['content'] }}<|im_end|>\n"
            "{% endif %}"
            "{% endfor %}"



Step 4: 训练 BPE Tokenizer  

在训练 BPE Tokenizer 之前，我们需要定义⼀个训练函数，⽤于训练 Tokenizer 并保存训练好的 Tokenizer ⽂件。
这⾥我们使⽤ tokenizers  库中的 Tokenizer  类来训练 BPE Tokenizer。

可以看到我们在训练 Tokenizer 时，配置了⼀些特殊的 token，如 <unk>、 <s>、 </s>、 <|im_start|>  和 
<|im_end|>。这些 token ⽤于标记未知词、句⼦的开始和结束，以及对话的开始和结束。这些特殊 token 可以帮
助模型更好地理解⽂本数据，提⾼模型的泛化能⼒和效果。

            "{% if add_generation_prompt %}"
            "{{ '<|im_start|>assistant\n' }}"
            "{% endif %}"
        )
    }

    # 保存主配置⽂件
    with open(os.path.join(save_dir, "tokenizer_config.json"), "w", encoding="utf-8") as 
f:

        json.dump(config, f, ensure_ascii=False, indent=4)

    # 创建special_tokens_map.json
    special_tokens_map = {
        "bos_token": "<|im_start|>",
        "eos_token": "<|im_end|>",
        "unk_token": "<unk>",
        "pad_token": "<|im_end|>",
        "additional_special_tokens": ["<s>", "</s>"]
    }
    with open(os.path.join(save_dir, "special_tokens_map.json"), "w", encoding="utf-8") as 
f:

        json.dump(special_tokens_map, f, ensure_ascii=False, indent=4)

def train_tokenizer(data_path: str, save_dir: str, vocab_size: int = 8192) -> None:

    """训练并保存⾃定义tokenizer"""
    os.makedirs(save_dir, exist_ok=True)
    
    # 初始化tokenizer
    tokenizer = Tokenizer(models.BPE(unk_token="<unk>"))
    tokenizer.normalizer = NFKC()  # 添加⽂本规范化
    tokenizer.pre_tokenizer = pre_tokenizers.ByteLevel(add_prefix_space=False)
    tokenizer.decoder = decoders.ByteLevel()

    # 配置特殊token
    special_tokens = [
        "<unk>", 
        "<s>", 
        "</s>", 
        "<|im_start|>", 
        "<|im_end|>"
    ]



Step 5: 使⽤训练好的 Tokenizer  

我们可以使⽤训练好的 Tokenizer 来处理⽂本数据，如编码、解码、⽣成对话等。下⾯是⼀个简单的示例，展示了
如何使⽤训练好的 Tokenizer 来处理⽂本数据。

    # 配置训练器
    trainer = trainers.BpeTrainer(
        vocab_size=vocab_size,
        special_tokens=special_tokens,
        min_frequency=2,  # 提⾼低频词过滤
        show_progress=True,
        initial_alphabet=pre_tokenizers.ByteLevel.alphabet()
    )

    # 训练tokenizer
    print(f"Training tokenizer with data from {data_path}")
    texts = read_texts_from_jsonl(data_path)
    tokenizer.train_from_iterator(texts, trainer=trainer, 
length=os.path.getsize(data_path))

    # 验证特殊token映射
    try:
        assert tokenizer.token_to_id("<unk>") == 0
        assert tokenizer.token_to_id("<s>") == 1
        assert tokenizer.token_to_id("</s>") == 2
        assert tokenizer.token_to_id("<|im_start|>") == 3
        assert tokenizer.token_to_id("<|im_end|>") == 4
    except AssertionError as e:
        print("Special tokens mapping error:", e)
        raise

    # 保存tokenizer⽂件
    tokenizer.save(os.path.join(save_dir, "tokenizer.json"))
    
    # 创建配置⽂件
    create_tokenizer_config(save_dir)
    print(f"Tokenizer saved to {save_dir}")

def eval_tokenizer(tokenizer_path: str) -> None:

    """评估tokenizer功能"""

    try:
        tokenizer = AutoTokenizer.from_pretrained(tokenizer_path)
    except Exception as e:
        print(f"Error loading tokenizer: {e}")
        return

    # 测试基本属性
    print("\n=== Tokenizer基本信息 ===")
    print(f"Vocab size: {len(tokenizer)}")
    print(f"Special tokens: {tokenizer.all_special_tokens}")
    print(f"Special token IDs: {tokenizer.all_special_ids}")



OUT:

    # 测试聊天模板
    messages = [
        {"role": "system", "content": "你是⼀个AI助⼿。"},

        {"role": "user", "content": "How are you?"},
        {"role": "assistant", "content": "I'm fine, thank you. and you?"},
        {"role": "user", "content": "I'm good too."},
        {"role": "assistant", "content": "That's great to hear!"},
    ]
    
    print("\n=== 聊天模板测试 ===")

    prompt = tokenizer.apply_chat_template(
        messages, 
        tokenize=False, 
        # add_generation_prompt=True
    )
    print("Generated prompt:\n", prompt, sep="")

    # 测试编码解码
    print("\n=== 编码解码测试 ===")

    encoded = tokenizer(prompt, truncation=True, max_length=256)
    decoded = tokenizer.decode(encoded["input_ids"], skip_special_tokens=False)
    print("Decoded text matches original:", decoded == prompt)

    # 测试特殊token处理
    print("\n=== 特殊token处理 ===")

    test_text = "<|im_start|>user\nHello<|im_end|>"
    encoded = tokenizer(test_text).input_ids
    decoded = tokenizer.decode(encoded)
    print(f"Original: {test_text}")
    print(f"Decoded:  {decoded}")
    print("Special tokens preserved:", decoded == test_text)

eval_tokenizer('your tokenizer path')

=== Tokenizer基本信息 ===
Vocab size: 6144

Special tokens: ['<|im_start|>', '<|im_end|>', '<unk>', '<s>', '</s>']

Special token IDs: [3, 4, 0, 1, 2]

=== 聊天模板测试 ===
Generated prompt:

<|im_start|>system

你是⼀个AI助⼿。<|im_end|>
<|im_start|>user

How are you?<|im_end|>

<|im_start|>assistant

I'm fine, thank you. and you?<|im_end|>

<|im_start|>user



5.3 预训练⼀个⼩型LLM  
在前⾯的章节中，我们熟悉了各种⼤模型的模型结构，以及如如何训练Tokenizer。在本节中，我们将动⼿训练⼀
个⼋千万参数的LLM。

5.3.1 数据下载  

⾸先，我们需要下载预训练数据集。在这⾥，我们使⽤两个开源的数据集，包含了⼤量的中⽂对话数据，可以⽤于
训练对话⽣成模型。

出⻔问问序列猴⼦开源数据集：出⻔问问序列猴⼦通⽤⽂本数据集由来⾃⽹⻚、百科、博客、问答、开源代
码、书籍、报刊、专利、教材、考题等多种公开可获取的数据进⾏汇总清洗之后⽽形成的⼤语⾔模型预训练语
料。总量⼤概在 10B Token。

BelleGroup：350万条中⽂对话数据集，包含了⼈机对话、⼈⼈对话、⼈物对话等多种对话数据，可以⽤于训
练对话⽣成模型。

I'm good too.<|im_end|>

<|im_start|>assistant

That's great to hear!<|im_end|>

=== 编码解码测试 ===
Decoded text matches original: False

=== 特殊token处理 ===

Original: <|im_start|>user

Hello<|im_end|>

Decoded:  <|im_start|> user

Hello<|im_end|>

Special tokens preserved: False

# 下载预训练数据集
os.system("modelscope download --dataset ddzhu123/seq-monkey 

mobvoi_seq_monkey_general_open_corpus.jsonl.tar.bz2 --local_dir your_local_dir")

# 解压预训练数据集
os.system("tar -xvf your_local_dir/mobvoi_seq_monkey_general_open_corpus.jsonl.tar.bz2")

# 下载SFT数据集
os.system(f'huggingface-cli download --repo-type dataset --resume-download 

BelleGroup/train_3.5M_CN --local-dir BelleGroup')

# 1 处理预训练数据
def split_text(text, chunk_size=512):

    """将⽂本按指定⻓度切分成块"""
    return [text[i:i+chunk_size] for i in range(0, len(text), chunk_size)]

input_file = 'mobvoi_seq_monkey_general_open_corpus.jsonl'



5.3.2 训练 Tokenizer  

⾸先，我们需要为⽂本处理训练⼀个Tokenizer。Tokenizer的作⽤是将⽂本转换为数字序列，以便模型能够理解和
处理。我们使⽤的数据集是 出⻔问问序列猴⼦开源数据集 ，这个数据集包含了⼤量的中⽂⽂本数据，可以⽤于训
练Tokenizer。

注：由于数据集较⼤，如果⼤家在⾃⼰本地电脑训练的话进度⽐较慢，所以在这⾥我们提供了⼀个已经训练
好的Tokenizer，⼤家可以直接使⽤。如果⼤家想要⾃⼰训练的话，可以参考下⾯的代码。

with open('seq_monkey_datawhale.jsonl', 'a', encoding='utf-8') as pretrain:

    with open(input_file, 'r', encoding='utf-8') as f:
        data = f.readlines()
        for line in tqdm(data, desc=f"Processing lines in {input_file}", leave=False):  # 
添加⾏级别的进度条
            line = json.loads(line)
            text = line['text']
            chunks = split_text(text)
            for chunk in chunks:
                pretrain.write(json.dumps({'text': chunk}, ensure_ascii=False) + '\n')

# 2 处理SFT数据

def convert_message(data):

    """
    将原始数据转换为标准格式
    """
    message = [
        {"role": "system", "content": "你是⼀个AI助⼿"},

    ]
    for item in data:
        if item['from'] == 'human':
            message.append({'role': 'user', 'content': item['value']})
        elif item['from'] == 'assistant':
            message.append({'role': 'assistant', 'content': item['value']})
    return message

with open('BelleGroup_sft.jsonl', 'a', encoding='utf-8') as sft:

    with open('BelleGroup/train_3.5M_CN.json', 'r', encoding='utf-8') as f:
        data = f.readlines()
        for item in tqdm(data, desc="Processing", unit="lines"):
            item = json.loads(item)
            message = convert_message(item['conversations'])
            sft.write(json.dumps(message, ensure_ascii=False) + '\n')

python code/train_tokenizer.py

import random

import json

import os

from transformers import AutoTokenizer, PreTrainedTokenizerFast

https://www.modelscope.cn/datasets/ddzhu123/seq-monkey/files


from tokenizers import (

    decoders,
    models,
    pre_tokenizers,
    trainers,
    Tokenizer,
)

from tokenizers.normalizers import NFKC

from typing import Generator

random.seed(42)

def read_texts_from_jsonl(file_path: str) -> Generator[str, None, None]:

    """读取JSONL⽂件并安全提取⽂本数据"""
    with open(file_path, 'r', encoding='utf-8') as f:
        for line_num, line in enumerate(f, 1):
            try:
                data = json.loads(line)
                if 'text' not in data:
                    raise KeyError(f"Missing 'text' field in line {line_num}")
                yield data['text']
            except json.JSONDecodeError:
                print(f"Error decoding JSON in line {line_num}")
                continue
            except KeyError as e:
                print(e)
                continue

def create_tokenizer_config(save_dir: str) -> None:

    """创建完整的tokenizer配置⽂件"""
    config = {
        "add_bos_token": False,
        "add_eos_token": False,
        "add_prefix_space": True,
        "bos_token": "<|im_start|>",
        "eos_token": "<|im_end|>",
        "pad_token": "<|im_end|>",
        "unk_token": "<unk>",
        "model_max_length": 1000000000000000019884624838656,
        "clean_up_tokenization_spaces": False,
        "tokenizer_class": "PreTrainedTokenizerFast",
        "chat_template": (
            "{% for message in messages %}"
            "{% if message['role'] == 'system' %}"
            "<|im_start|>system\n{{ message['content'] }}<|im_end|>\n"
            "{% elif message['role'] == 'user' %}"
            "<|im_start|>user\n{{ message['content'] }}<|im_end|>\n"
            "{% elif message['role'] == 'assistant' %}"
            "<|im_start|>assistant\n{{ message['content'] }}<|im_end|>\n"
            "{% endif %}"
            "{% endfor %}"
            "{% if add_generation_prompt %}"



            "{{ '<|im_start|>assistant\n' }}"
            "{% endif %}"
        )
    }

    # 保存主配置⽂件
    with open(os.path.join(save_dir, "tokenizer_config.json"), "w", encoding="utf-8") as 
f:

        json.dump(config, f, ensure_ascii=False, indent=4)

    # 创建special_tokens_map.json

    special_tokens_map = {
        "bos_token": "<|im_start|>",
        "eos_token": "<|im_end|>",
        "unk_token": "<unk>",
        "pad_token": "<|im_end|>",
        "additional_special_tokens": ["<s>", "</s>"]
    }
    with open(os.path.join(save_dir, "special_tokens_map.json"), "w", encoding="utf-8") as 
f:

        json.dump(special_tokens_map, f, ensure_ascii=False, indent=4)

def train_tokenizer(data_path: str, save_dir: str, vocab_size: int = 8192) -> None:

    """训练并保存⾃定义tokenizer"""
    os.makedirs(save_dir, exist_ok=True)
    
    # 初始化tokenizer
    tokenizer = Tokenizer(models.BPE(unk_token="<unk>"))
    tokenizer.normalizer = NFKC()  # 添加⽂本规范化
    tokenizer.pre_tokenizer = pre_tokenizers.ByteLevel(add_prefix_space=False)
    tokenizer.decoder = decoders.ByteLevel()

    # 配置特殊token

    special_tokens = [
        "<unk>", 
        "<s>", 
        "</s>", 
        "<|im_start|>", 
        "<|im_end|>"
    ]

    # 配置训练器
    trainer = trainers.BpeTrainer(
        vocab_size=vocab_size,
        special_tokens=special_tokens,
        min_frequency=2,  # 提⾼低频词过滤
        show_progress=True,
        initial_alphabet=pre_tokenizers.ByteLevel.alphabet()
    )

    # 训练tokenizer

    print(f"Training tokenizer with data from {data_path}")



    texts = read_texts_from_jsonl(data_path)
    tokenizer.train_from_iterator(texts, trainer=trainer, 
length=os.path.getsize(data_path))

    # 验证特殊token映射
    try:
        assert tokenizer.token_to_id("<unk>") == 0
        assert tokenizer.token_to_id("<s>") == 1
        assert tokenizer.token_to_id("</s>") == 2
        assert tokenizer.token_to_id("<|im_start|>") == 3
        assert tokenizer.token_to_id("<|im_end|>") == 4
    except AssertionError as e:
        print("Special tokens mapping error:", e)
        raise

    # 保存tokenizer⽂件
    tokenizer.save(os.path.join(save_dir, "tokenizer.json"))
    
    # 创建配置⽂件
    create_tokenizer_config(save_dir)
    print(f"Tokenizer saved to {save_dir}")

def eval_tokenizer(tokenizer_path: str) -> None:

    """评估tokenizer功能"""

    try:
        tokenizer = AutoTokenizer.from_pretrained(tokenizer_path)
    except Exception as e:
        print(f"Error loading tokenizer: {e}")
        return

    # 测试基本属性
    print("\n=== Tokenizer基本信息 ===")

    print(f"Vocab size: {len(tokenizer)}")
    print(f"Special tokens: {tokenizer.all_special_tokens}")
    print(f"Special token IDs: {tokenizer.all_special_ids}")

    # 测试聊天模板
    messages = [
        {"role": "system", "content": "你是⼀个AI助⼿。"},

        {"role": "user", "content": "How are you?"},
        {"role": "assistant", "content": "I'm fine, thank you. and you?"},
        {"role": "user", "content": "I'm good too."},
        {"role": "assistant", "content": "That's great to hear!"},
    ]
    
    print("\n=== 聊天模板测试 ===")

    prompt = tokenizer.apply_chat_template(
        messages, 
        tokenize=False, 
        # add_generation_prompt=True
    )
    print("Generated prompt:\n", prompt, sep="")



训练完成之后可以可以使⽤ eval_tokenizer()  测试 Tokenizer 的功能，确保 Tokenizer 正常⼯作。在这个函数
中，我们⾸先加载训练好的 Tokenizer，然后测试了 Tokenizer 的基本属性、聊天模板、编码解码等功能。这些测
试可以帮助我们验证 Tokenizer 的正确性，确保它能够正常⼯作。正确的输出为：

OUT:

    # 测试编码解码
    print("\n=== 编码解码测试 ===")

    encoded = tokenizer(prompt, truncation=True, max_length=256)
    decoded = tokenizer.decode(encoded["input_ids"], skip_special_tokens=False)
    print("Decoded text matches original:", decoded == prompt)

    # 测试特殊token处理
    print("\n=== 特殊token处理 ===")

    test_text = "<|im_start|>user\nHello<|im_end|>"
    encoded = tokenizer(test_text).input_ids
    decoded = tokenizer.decode(encoded)
    print(f"Original: {test_text}")
    print(f"Decoded:  {decoded}")
    print("Special tokens preserved:", decoded == test_text)

def main():

    # 配置路径
    data_path = "your data path"
    save_dir = "tokenizer_k"

    # 训练tokenizer

    train_tokenizer(
        data_path=data_path,
        save_dir=save_dir,
        vocab_size=6144
    )

    # 评估tokenizer

    eval_tokenizer(save_dir)

if __name__ == '__main__':

    main()

=== Tokenizer基本信息 ===
Vocab size: 6144

Special tokens: ['<|im_start|>', '<|im_end|>', '<unk>', '<s>', '</s>']

Special token IDs: [3, 4, 0, 1, 2]

=== 聊天模板测试 ===
Generated prompt:

<|im_start|>system

你是⼀个AI助⼿。<|im_end|>
<|im_start|>user

How are you?<|im_end|>



5.3.3 Dataset  

PretrainDataset  

在将数据送⼊到模型之前，我们还需要进⾏⼀些处理⽤于将⽂本数据转化为模型能够理解的Token。在这⾥我们使
⽤的是Pytorch的Dataset类，⽤于加载数据集。我们定义了⼀个 PretrainDataset类，⽤于加载已预处理好的数
据集。我们继承了 torch.utils.data.IterableDataset来定义该数据集，这使得我们可以更灵活、⾼效地处理
数据。

<|im_start|>assistant

I'm fine, thank you. and you?<|im_end|>

<|im_start|>user

I'm good too.<|im_end|>

<|im_start|>assistant

That's great to hear!<|im_end|>

=== 编码解码测试 ===
Decoded text matches original: False

=== 特殊token处理 ===

Original: <|im_start|>user

Hello<|im_end|>

Decoded:  <|im_start|> user

Hello<|im_end|>

Special tokens preserved: False

from torch.utils.data import Dataset

class PretrainDataset(Dataset):

    def __init__(self, data_path, tokenizer, max_length=512):
        super().__init__()
        self.data_path = data_path
        self.tokenizer = tokenizer
        self.max_length = max_length
        self.padding = 0
        with open(data_path, 'r', encoding='utf-8') as f:
            self.data = f.readlines()

    def __len__(self):
        return len(self.data)

    def __getitem__(self, index: int):
        sample = json.loads(self.data[index])
        text = f"{self.tokenizer.bos_token}{sample['text']}"
        input_id = self.tokenizer(text).data['input_ids'][:self.max_length]
        text_len = len(input_id)
        # 没满最⼤⻓度的剩余部分
        padding_len = self.max_length - text_len
        input_id = input_id + [self.padding] * padding_len
        # 0表示不计算损失



在以上代码和图5.3可以看出， Pretrain Dataset  主要是将 text  通过 tokenizer  转换成 input_id，然后将 
input_id  拆分成 X  和 Y，其中 X  为 input_id  的前 n-1 个元素， Y  为 input_id  的后 n-1 个元素。
loss_mask  主要是⽤来标记哪些位置需要计算损失，哪些位置不需要计算损失。

图5.3 预训练损失函数计算

图中示例展示了当 max_length=9时的处理过程：

输⼊序列： [BOS, T1, T2, T3, T4, T5, T6, T7, EOS]

样本拆分：

X： [BOS, T1, T2, T3, T4, T5, T6, T7]  → 模型输⼊上下⽂

Y： [T1, T2, T3, T4, T5, T6, T7, EOS]  → 模型预测⽬标

损失掩码：

有效位置： [0, 1, 1, 1, 1, 1, 1, 1, 1]  → 仅对T1-EOS计算损失

SFTDataset  

SFTDataset  其实是⼀个多轮对话数据集，我们的⽬标是让模型学会如何进⾏多轮对话。在这个阶段我们的输⼊是
上⼀轮的对话内容，输出是当前轮的对话内容。

        loss_mask = [1] * text_len + [0] * padding_len

        input_id = np.array(input_id)
        X = np.array(input_id[:-1]).astype(np.int64)
        Y = np.array(input_id[1:]).astype(np.int64)
        loss_mask = np.array(loss_mask[1:]).astype(np.int64)
        return torch.from_numpy(X), torch.from_numpy(Y), torch.from_numpy(loss_mask)

class SFTDataset(Dataset):

    def __init__(self, data_path, tokenizer, max_length=512):
        super().__init__()
        self.data_path = data_path
        self.tokenizer = tokenizer



        self.max_length = max_length
        self.padding = 0
        with open(data_path, 'r', encoding='utf-8') as f:
            self.data = f.readlines()

    def __len__(self):
        return len(self.data)

    def generate_loss_mask(self, input_ids):
        # ⽣成 loss mask, 0 表示不计算损失, 1 表示计算损失
        mask = [0] * len(input_ids)
        a_sequence = [3, 1074, 537, 500, 203]  # <|im_start|>assistant\n
        a_length = len(a_sequence)
        n = len(input_ids)
        i = 0
        
        while i <= n - a_length:
            # 检查当前位置是否匹配⽬标⼦序列
            match = True
            for k in range(a_length):
                if input_ids[i + k] != a_sequence[k]:
                    match = False
                    break
            if match:
                # 从⼦序列结束的位置开始查找第⼀个4, 4 为 <|im_end|> EOS id

                j = None
                for idx in range(i + a_length, n):
                    if input_ids[idx] == 4:
                        j = idx
                        break
                if j is not None:
                    start = i + a_length
                    end = j  # 结束位置设为j（包含4）
                    # 标记区间为1（包括start到end）
                    if start <= end:
                        for pos in range(start, end + 1):
                            if pos < len(mask):
                                mask[pos] = 1
                # 跳过当前⼦序列，避免重叠匹配
                i += a_length
            else:
                i += 1
        return mask

    def __getitem__(self, index: int):
        sample = json.loads(self.data[index])
        text = self.tokenizer.apply_chat_template(sample, tokenize=False, 
add_generation_prompt=False)

        input_id = self.tokenizer(text).data['input_ids'][:self.max_length]
        text_len = len(input_id)
        # 没满最⼤⻓度的剩余部分
        padding_len = self.max_length - text_len



在 SFT 阶段，这⾥使⽤的是多轮对话数据集，所以就需要区分哪些位置需要计算损失，哪些位置不需要计算损失。
在上⾯的代码中，我使⽤了⼀个 generate_loss_mask  函数来⽣成 loss_mask。这个函数主要是⽤来⽣成 
loss_mask，其中 loss_mask  的⽣成规则是：当遇到 |<im_start|>assistant\n  时，就开始计算损失，直到
遇到 |<im_end|>  为⽌。这样就可以保证我们的模型在 SFT 阶段只计算当前轮的对话内容，如图5.4所示。

图5.4 SFT 损失函数计算

可以看到，其实 SFT Dataset 和 Pretrain Dataset 的 X  和 Y  是⼀样的，只是在 SFT Dataset 中我们需要⽣成⼀个 
loss_mask  来标记哪些位置需要计算损失，哪些位置不需要计算损失。 图中 Input ids  中的蓝⾊⼩⽅格就是AI
的回答，所以是需要模型学习的地⽅。所以在 loss_mask  中，蓝⾊⼩⽅格对应的位置是⻩⾊，其他位置是灰⾊。
在代码 loss_mask  中的 1 对应的位置计算损失，0 对应的位置不计算损失。

5.3.4 预训练  

在数据预处理完成后，我们就可以开始训练模型了。我们使⽤的模型是⼀个和LLama2结构⼀样的 Decoder only 
Transformer模型，使⽤Pytorch实现。相关代码在 code/k_model.py⽂件中。此处不再赘述，源码中有详细的中
⽂注释，且我们在之前的⽂章中也有详细的介绍。

在模型这⼀部分可以重点看⼀下⽣成式模型是如何实现⽣成token的，可以查看 k_model.py⽂件中的
Transforerm类中的 generate⽅法。

        input_id = input_id + [self.padding] * padding_len
        # 0表示不计算损失
        loss_mask = self.generate_loss_mask(input_id)

        input_id = np.array(input_id)
        X = np.array(input_id[:-1]).astype(np.int64)
        Y = np.array(input_id[1:]).astype(np.int64)
        loss_mask = np.array(loss_mask[1:]).astype(np.int64)
        return torch.from_numpy(X), torch.from_numpy(Y), torch.from_numpy(loss_mask)

@torch.inference_mode()

    def generate(self, idx, stop_id=None, max_new_tokens=256, temperature=1.0, 
top_k=None):

        """
        给定输⼊序列 idx（形状为 (bz,seq_len) 的⻓整型张量），通过多次⽣成新 token 来完成序列。



在 generate  ⽅法中，我们⾸先获取序列中最后⼀个位置的 logits，然后基于这些 logits  ⽣成新的 token。
接着，⽣成的新 token  会被添加到序列中，模型随后会继续⽣成下⼀个 token。通过这种迭代过程，我们能够⽣
成完整的⽂本。

接下来就是最重要的部分，训练模型!

注：在使⽤下⾯代码进⾏模型训练时，需要指定 --data_path  参数为预处理好的数据集路径，例如 --
data_path seq_monkey_datawhale.jsonl，也需要指定要⽤哪⼏张GPU进⾏训练，例如 --gpus 0,1。

        在 model.eval() 模式下运⾏。效率较低的采样版本，没有使⽤键k/v cache。
        """
        index = idx.shape[1]
        for _ in range(max_new_tokens):
            # 如果序列上下⽂过⻓，截断它到最⼤⻓度
            idx_cond = idx if idx.size(1) <= self.args.max_seq_len else idx[:, -
self.args.max_seq_len:]

            
            # 前向传播获取序列中最后⼀个位置的 logits
            logits = self(idx_cond).logits
            logits = logits[:, -1, :] # 只保留最后⼀个时间步的输出
            
            if temperature == 0.0:
                # 选择最有可能的索引
                _, idx_next = torch.topk(logits, k=1, dim=-1)
            else:
                # 缩放 logits 并应⽤ softmax
                logits = logits / temperature
                if top_k is not None:
                    v, _ = torch.topk(logits, min(top_k, logits.size(-1)))
                    logits[logits < v[:, [-1]]] = -float('Inf')
                probs = F.softmax(logits, dim=-1)
                idx_next = torch.multinomial(probs, num_samples=1)
            

            if idx_next == stop_id:
                break

            # 将采样的索引添加到序列中并继续
            idx = torch.cat((idx, idx_next), dim=1)

        return idx[:, index:] # 只返回⽣成的token

def get_lr(it, all):

    """
    计算当前迭代的学习率，使⽤余弦退⽕调度策略
    
    学习率调度策略：
    1. Warmup阶段：学习率从0线性增⻓到⽬标学习率
    2. 余弦退⽕阶段：学习率按余弦函数衰减到最⼩学习率
    3. 超出训练步数后：保持最⼩学习率
    



    Args:
        it (int): 当前迭代步数
        all (int): 总迭代步数
        
    Returns:
        float: 当前步数对应的学习率
    """
    warmup_iters = args.warmup_iters  # 预热迭代次数
    lr_decay_iters = all  # 学习率衰减的总迭代次数
    min_lr = args.learning_rate / 10  # 最⼩学习率，为初始学习率的1/10

    # Warmup阶段：线性增⻓
    if it < warmup_iters:
        return args.learning_rate * it / warmup_iters
    
    # 超出训练步数：保持最⼩学习率
    if it > lr_decay_iters:
        return min_lr
    
    # 余弦退⽕阶段
    decay_ratio = (it - warmup_iters) / (lr_decay_iters - warmup_iters)
    assert 0 <= decay_ratio <= 1
    coeff = 0.5 * (1.0 + math.cos(math.pi * decay_ratio))  # 余弦系数
    return min_lr + coeff * (args.learning_rate - min_lr)

def train_epoch(epoch):

    """
    训练⼀个epoch的函数
    
    实现了完整的训练循环，包括：
    1. 数据加载和设备转移
    2. 动态学习率调整
    3. 前向传播和损失计算
    4. 梯度累积和反向传播
    5. 梯度裁剪和优化器更新
    6. ⽇志记录和模型保存
    
    Args:
        epoch (int): 当前epoch编号
    """
    start_time = time.time()  # 记录开始时间
    
    # 遍历数据加载器中的每个batch

    for step, (X, Y, loss_mask) in enumerate(train_loader):
        # 将数据转移到指定设备（GPU/CPU）
        X = X.to(args.device)  # 输⼊序列
        Y = Y.to(args.device)  # ⽬标序列
        loss_mask = loss_mask.to(args.device)  # 损失掩码，⽤于忽略padding token

        # 计算当前步骤的学习率
        lr = get_lr(epoch * iter_per_epoch + step, args.epochs * iter_per_epoch)
        # 更新优化器中所有参数组的学习率



        for param_group in optimizer.param_groups:
            param_group['lr'] = lr

        # 使⽤混合精度训练上下⽂
        with ctx:
            # 前向传播
            out = model(X, Y)
            # 计算损失并除以累积步数（⽤于梯度累积）
            loss = out.last_loss / args.accumulation_steps
            # 将loss_mask展平为⼀维
            loss_mask = loss_mask.view(-1)
            # 应⽤掩码计算有效损失（忽略padding位置）
            loss = torch.sum(loss * loss_mask) / loss_mask.sum()

        # 使⽤scaler进⾏混合精度的反向传播
        scaler.scale(loss).backward()

        # 每accumulation_steps步执⾏⼀次优化器更新
        if (step + 1) % args.accumulation_steps == 0:
            # 取消梯度缩放，准备梯度裁剪
            scaler.unscale_(optimizer)
            # 梯度裁剪，防⽌梯度爆炸
            torch.nn.utils.clip_grad_norm_(model.parameters(), args.grad_clip)

            # 执⾏优化器步骤
            scaler.step(optimizer)
            # 更新scaler的缩放因⼦
            scaler.update()

            # 清零梯度，set_to_none=True可以节省内存
            optimizer.zero_grad(set_to_none=True)

        # 每log_interval步记录⼀次⽇志
        if step % args.log_interval == 0:
            spend_time = time.time() - start_time
            # 打印训练进度信息
            Logger(
                'Epoch:[{}/{}]({}/{}) loss:{:.3f} lr:{:.7f} epoch_Time:{}min;'.format(
                    epoch + 1,
                    args.epochs,
                    step,
                    iter_per_epoch,
                    loss.item() * args.accumulation_steps,  # 恢复真实的loss值
                    optimizer.param_groups[-1]['lr'],
                    spend_time / (step + 1) * iter_per_epoch // 60 - spend_time // 60))
            
            # 如果启⽤SwanLab，记录训练指标
            if args.use_swanlab:
                swanlab.log({
                    "loss": loss.item() * args.accumulation_steps,
                    "lr": optimizer.param_groups[-1]['lr']
                })



        # 每save_interval步保存⼀次模型
        if (step + 1) % args.save_interval == 0:
            model.eval()  # 切换到评估模式
            # 构建检查点⽂件名
            ckp = 
f'{args.save_dir}/pretrain_{lm_config.dim}_{lm_config.n_layers}_{lm_config.vocab_size}.pth

'

            # 处理多卡保存：如果是DataParallel模型，需要访问.module属性
            state_dict = model.module.state_dict() if isinstance(model, 
torch.nn.DataParallel) else model.state_dict()

            torch.save(state_dict, ckp)
            model.train()  # 切换回训练模式
        
        # 每20000步保存⼀个带步数标记的检查点
        if (step + 1) % 20000 == 0:
            model.eval()
            # 构建带步数的检查点⽂件名
            ckp = 
f'{args.save_dir}/pretrain_{lm_config.dim}_{lm_config.n_layers}_{lm_config.vocab_size}_ste

p{step+1}.pth'

            # 保存模型状态字典
            state_dict = model.module.state_dict() if isinstance(model, 
torch.nn.DataParallel) else model.state_dict()

            torch.save(state_dict, ckp)
            model.train()

def init_model():

    """
    初始化模型和分词器
    
    功能包括：
    1. 加载预训练的分词器
    2. 创建Transformer模型
    3. 设置多GPU并⾏训练（如果可⽤）
    4. 将模型移动到指定设备
    5. 统计并打印模型参数量
    
    Returns:
        tuple: (model, tokenizer) 初始化后的模型和分词器
    """
    def count_parameters(model):
        """
        统计模型中可训练参数的数量
        
        Args:
            model: PyTorch模型
            
        Returns:



            int: 可训练参数总数
        """
        return sum(p.numel() for p in model.parameters() if p.requires_grad)

    # 从本地路径加载预训练的分词器
    tokenizer = AutoTokenizer.from_pretrained('./tokenizer_k/')

    # 根据配置创建Transformer模型
    model = Transformer(lm_config)
    
    # 多卡初始化：检查可⽤GPU数量并设置DataParallel
    num_gpus = torch.cuda.device_count()
    if num_gpus > 1:
        Logger(f"Using {num_gpus} GPUs with DataParallel!")
        # 使⽤DataParallel包装模型以⽀持多GPU训练
        model = torch.nn.DataParallel(model)
    
    # 将模型移动到指定设备（GPU或CPU）
    model = model.to(args.device)
    
    # 计算并打印模型参数量（以百万为单位）
    Logger(f'LLM总参数量：{count_parameters(model) / 1e6:.3f} 百万')

    return model, tokenizer

if __name__ == "__main__":

    # ==================== 命令⾏参数解析 ====================

    parser = argparse.ArgumentParser(description="Tiny-LLM Pretraining")
    
    # 基础训练参数
    parser.add_argument("--out_dir", type=str, default="base_model_215M", help="模型输出⽬
录")

    parser.add_argument("--epochs", type=int, default=1, help="训练轮数")

    parser.add_argument("--batch_size", type=int, default=64, help="批次⼤⼩")

    parser.add_argument("--learning_rate", type=float, default=2e-4, help="学习率")

    parser.add_argument("--device", type=str, default="cuda:0" if 
torch.cuda.is_available() else "cpu", help="训练设备")

    parser.add_argument("--dtype", type=str, default="bfloat16", help="数据类型")

    
    # 实验跟踪和数据加载参数
    parser.add_argument("--use_swanlab", action="store_true", help="是否使⽤SwanLab进⾏实验跟
踪")

    parser.add_argument("--num_workers", type=int, default=8, help="数据加载的⼯作进程数")

    parser.add_argument("--data_path", type=str, default="./seq_monkey_datawhale.jsonl", 
help="训练数据路径")
    
    # 训练优化参数
    parser.add_argument("--accumulation_steps", type=int, default=8, help="梯度累积步数")

    parser.add_argument("--grad_clip", type=float, default=1.0, help="梯度裁剪阈值")

    parser.add_argument("--warmup_iters", type=int, default=0, help="学习率预热迭代次数")

    
    # ⽇志和保存参数



    parser.add_argument("--log_interval", type=int, default=100, help="⽇志记录间隔")

    parser.add_argument("--save_interval", type=int, default=1000, help="模型保存间隔")

    
    # 多GPU训练参数
    parser.add_argument("--gpus", type=str, default='0,1,2,3,4,5,6,7', help="使⽤的GPU ID，
⽤逗号分隔 (例如: '0,1,2')")

    args = parser.parse_args()

    # ==================== GPU环境设置 ====================

    # 设置可⻅的GPU设备
    if args.gpus is not None:
        os.environ["CUDA_VISIBLE_DEVICES"] = args.gpus
        # ⾃动设置主设备为第⼀个可⽤GPU

        if torch.cuda.is_available():
            args.device = "cuda:0"
        else:
            args.device = "cpu"

    # ==================== 实验跟踪初始化 ====================

    if args.use_swanlab:
        # 注意：使⽤前需要先登录 swanlab.login(api_key='your key')

        run = swanlab.init(
            project="Happy-LLM",  # 项⽬名称
            experiment_name="Pretrain-215M",  # 实验名称
            config=args,  # 保存所有超参数
        )

    # ==================== 模型配置 ====================

    # 定义语⾔模型的配置参数
    lm_config = ModelConfig(
        dim=1024,      # 模型维度
        n_layers=18,   # Transformer层数
    )

    # ==================== 训练环境设置 ====================

    max_seq_len = lm_config.max_seq_len  # 最⼤序列⻓度
    args.save_dir = os.path.join(args.out_dir)  # 模型保存⽬录
    
    # 创建必要的⽬录
    os.makedirs(args.out_dir, exist_ok=True)
    
    # 设置随机种⼦以确保结果可复现
    torch.manual_seed(42)
    
    # 确定设备类型（⽤于选择合适的上下⽂管理器）
    device_type = "cuda" if "cuda" in args.device else "cpu"

    # 设置混合精度训练的上下⽂管理器
    # CPU训练时使⽤nullcontext，GPU训练时使⽤autocast

    ctx = nullcontext() if device_type == "cpu" else torch.cuda.amp.autocast()



5.3.5 SFT 训练  

SFT 训练和预训练的代码基本⼀样，只是导⼊的 Dataset 不⼀样。在这⾥我们使⽤的是 SFTDataset，⽤于多轮对
话的训练。

    # ==================== 模型和数据初始化 ====================
    # 初始化模型和分词器
    model, tokenizer = init_model()
    
    # 创建训练数据集
    train_ds = PretrainDataset(args.data_path, tokenizer, max_length=max_seq_len)
    
    # 创建数据加载器
    train_loader = DataLoader(
        train_ds,
        batch_size=args.batch_size,  # 批次⼤⼩
        pin_memory=True,             # 将数据加载到固定内存中，加速GPU传输
        drop_last=False,             # 不丢弃最后⼀个不完整的批次
        shuffle=True,                # 随机打乱数据
        num_workers=args.num_workers # 数据加载的并⾏⼯作进程数
    )

    # ==================== 优化器和训练组件初始化 ====================

    # 初始化混合精度训练的梯度缩放器
    # 只有在使⽤float16或bfloat16时才启⽤
    scaler = torch.cuda.amp.GradScaler(enabled=(args.dtype in ['float16', 'bfloat16']))
    
    # 初始化Adam优化器
    optimizer = optim.Adam(model.parameters(), lr=args.learning_rate)

    # ==================== 开始训练 ====================

    # 计算每个epoch的迭代次数
    iter_per_epoch = len(train_loader)
    
    # 开始训练循环
    for epoch in range(args.epochs):
        train_epoch(epoch)

import os

import platform

import argparse

import time

import warnings

import math

import pandas as pd

import torch

from torch import optim

from torch.utils.data import DataLoader

from contextlib import nullcontext

from transformers import AutoTokenizer



from k_model import ModelConfig, Transformer

from dataset import SFTDataset

import swanlab

# 忽略警告
warnings.filterwarnings('ignore')

def Logger(content):

    """⽇志记录器"""
    print(content)

def get_lr(it, all):

    """获取学习率"""
    # 1) linear warmup for warmup_iters steps
    # 1) 预热迭代的线性预热
    warmup_iters = args.warmup_iters
    lr_decay_iters = all
    min_lr = args.learning_rate / 10

    if it < warmup_iters:
        return args.learning_rate * it / warmup_iters
    
    # 2) if it > lr_decay_iters, return min learning rate
    # 2) 如果迭代次数超过学习率衰减迭代次数，则返回最⼩学习率
    if it > lr_decay_iters:
        return min_lr
    
    # 3) in between, use cosine decay down to min learning rate
    # 3) 在两者之间，使⽤余弦衰减⾄最⼩学习率
    decay_ratio = (it - warmup_iters) / (lr_decay_iters - warmup_iters)
    assert 0 <= decay_ratio <= 1
    coeff = 0.5 * (1.0 + math.cos(math.pi * decay_ratio))
    return min_lr + coeff * (args.learning_rate - min_lr)

def train_epoch(epoch):

    """训练⼀个epoch"""
    start_time = time.time()
    for step, (X, Y, loss_mask) in enumerate(train_loader):
        X = X.to(args.device)
        Y = Y.to(args.device)
        loss_mask = loss_mask.to(args.device)

        # 获取学习率并更新优化器
        lr = get_lr(epoch * iter_per_epoch + step, args.epochs * iter_per_epoch)
        for param_group in optimizer.param_groups:
            param_group['lr'] = lr

        # 前向传播
        with ctx:



            out = model(X, Y)
            loss = out.last_loss / args.accumulation_steps
            loss_mask = loss_mask.view(-1)
            loss = torch.sum(loss * loss_mask) / loss_mask.sum()

        # 反向传播
        scaler.scale(loss).backward()

        # 更新权重
        if (step + 1) % args.accumulation_steps == 0:
            scaler.unscale_(optimizer)
            torch.nn.utils.clip_grad_norm_(model.parameters(), args.grad_clip)

            scaler.step(optimizer)
            scaler.update()

            optimizer.zero_grad(set_to_none=True)

        # 打印⽇志
        if step % args.log_interval == 0:
            spend_time = time.time() - start_time
            Logger(
                'Epoch:[{}/{}]({}/{}) loss:{:.3f} lr:{:.7f} epoch_Time:{}min:'.format(
                    epoch + 1,
                    args.epochs,
                    step,
                    iter_per_epoch,
                    loss.item() * args.accumulation_steps,
                    optimizer.param_groups[-1]['lr'],
                    spend_time / (step + 1) * iter_per_epoch // 60 - spend_time // 60))
            if args.use_swanlab:
                swanlab.log({
                    "loss": loss.item() * args.accumulation_steps,
                    "lr": optimizer.param_groups[-1]['lr']
                })

        # 保存模型
        if (step + 1) % args.save_interval == 0:
            model.eval()
            ckp = 
f'{args.save_dir}/sft_dim{lm_config.dim}_layers{lm_config.n_layers}_vocab_size{lm_config.v

ocab_size}.pth'

            # 处理多卡保存
            state_dict = model.module.state_dict() if isinstance(model, 
torch.nn.DataParallel) else model.state_dict()

            torch.save(state_dict, ckp)
            model.train()
        
        # 定期保存模型
        if (step + 1) % 20000 == 0:
            model.eval()



            ckp = 
f'{args.save_dir}/sft_dim{lm_config.dim}_layers{lm_config.n_layers}_vocab_size{lm_config.v

ocab_size}_step{step+1}.pth'

            state_dict = model.module.state_dict() if isinstance(model, 
torch.nn.DataParallel) else model.state_dict()

            torch.save(state_dict, ckp)
            model.train()

def init_model():

    """初始化模型"""
    def count_parameters(model):
        """计算模型参数量"""
        return sum(p.numel() for p in model.parameters() if p.requires_grad)

    # 加载分词器
    tokenizer = AutoTokenizer.from_pretrained('./tokenizer_k/')

    # 初始化模型
    model = Transformer(lm_config)

    # 加载预训练权重
    ckp = './base_model_215M/pretrain_1024_18_6144.pth'
    state_dict = torch.load(ckp, map_location=args.device)
    unwanted_prefix = '_orig_mod.'
    for k, v in list(state_dict.items()):
        if k.startswith(unwanted_prefix):
            state_dict[k[len(unwanted_prefix):]] = state_dict.pop(k)
    model.load_state_dict(state_dict, strict=False)
    
    # 多卡初始化
    num_gpus = torch.cuda.device_count()
    if num_gpus > 1:
        Logger(f"Using {num_gpus} GPUs with DataParallel!")
        model = torch.nn.DataParallel(model)
    
    model = model.to(args.device)
    Logger(f'LLM总参数量：{count_parameters(model) / 1e6:.3f} 百万')

    return model, tokenizer

if __name__ == "__main__":

    parser = argparse.ArgumentParser(description="Tiny-LLM Pretraining")
    parser.add_argument("--out_dir", type=str, default="sft_model_215M", help="输出⽬录")

    parser.add_argument("--epochs", type=int, default=1, help="训练轮数")

    parser.add_argument("--batch_size", type=int, default=64, help="批处理⼤⼩")

    parser.add_argument("--learning_rate", type=float, default=2e-4, help="学习率")

    parser.add_argument("--device", type=str, default="cuda:0" if 
torch.cuda.is_available() else "cpu", help="使⽤的设备")

    parser.add_argument("--dtype", type=str, default="bfloat16", help="数据类型")



    parser.add_argument("--use_swanlab", action="store_true", help="是否使⽤SwanLab进⾏实验跟
踪")

    parser.add_argument("--num_workers", type=int, default=8, help="数据加载的⼯作进程数")

    parser.add_argument("--data_path", type=str, default="./BelleGroup_sft.jsonl", 
help="训练数据路径")
    parser.add_argument("--accumulation_steps", type=int, default=8, help="梯度累积步数")

    parser.add_argument("--grad_clip", type=float, default=1.0, help="梯度裁剪阈值")

    parser.add_argument("--warmup_iters", type=int, default=0, help="预热迭代次数")

    parser.add_argument("--log_interval", type=int, default=100, help="⽇志记录间隔")

    parser.add_argument("--save_interval", type=int, default=1000, help="模型保存间隔")

    # 添加多卡参数
    parser.add_argument("--gpus", type=str, default='0,1,2,3,4,5,6,7', help="逗号分隔的GPU 

ID (例如 '0,1,2')")

    args = parser.parse_args()

    # 设置可⻅GPU

    if args.gpus is not None:
        os.environ["CUDA_VISIBLE_DEVICES"] = args.gpus
        # ⾃动设置主设备为第⼀个GPU

        if torch.cuda.is_available():
            args.device = "cuda:0"
        else:
            args.device = "cpu"

    # 初始化swanlab
    if args.use_swanlab:
        run = swanlab.init(
            project="Happy-LLM",
            experiment_name="SFT-215M",
            config=args,
        )

    # 模型配置
    lm_config = ModelConfig(
        dim=1024,
        n_layers=18,
    )
    max_seq_len = lm_config.max_seq_len
    args.save_dir = os.path.join(args.out_dir)
    os.makedirs(args.out_dir, exist_ok=True)
    torch.manual_seed(42)
    device_type = "cuda" if "cuda" in args.device else "cpu"

    # 上下⽂管理器
    ctx = nullcontext() if device_type == "cpu" else torch.cuda.amp.autocast()

    # 初始化模型和分词器
    model, tokenizer = init_model()
    
    # 创建数据集和数据加载器
    train_ds = SFTDataset(args.data_path, tokenizer, max_length=max_seq_len)



5.3.6 使⽤模型⽣成⽂本  

在模型训练完成后，会在 output⽬录下⽣成模型⽂件，这个⽂件就是我们训练好的模型。我们可以使⽤以下命令
⽣成⽂本。

我们来看下 model_sample.py⽂件中的代码，这个⽂件中定义了⼀个 TextGenerator类，⽤于⽣成⽂本。

    train_loader = DataLoader(
        train_ds,
        batch_size=args.batch_size,
        pin_memory=True,
        drop_last=False,
        shuffle=True,
        num_workers=args.num_workers
    )

    # 缩放器和优化器
    scaler = torch.cuda.amp.GradScaler(enabled=(args.dtype in ['float16', 'bfloat16']))
    optimizer = optim.AdamW(model.parameters(), lr=args.learning_rate)

    # 开始训练
    iter_per_epoch = len(train_loader)
    for epoch in range(args.epochs):
        train_epoch(epoch)

python model_sample.py

import os

import pickle

from contextlib import nullcontext

import torch

from k_model import ModelConfig, Transformer

from transformers import AutoTokenizer, AutoModelForCausalLM

import argparse

class TextGenerator:

    def __init__(self, 
                 checkpoint='./base_model_215M/pretrain_1024_18_6144.pth',  # 模型检查点路径
                 tokenizer_model_path='./tokenizer_k/',  # 分词器模型路径
                 seed=42,  # 随机种⼦，确保可重复性
                 device=None,  # 设备，优先使⽤ CUDA，如果没有可⽤的 CUDA，则使⽤ CPU

                 dtype="bfloat16"):  # 数据类型，默认为 float32，可以选择 float16 或 bfloat16
        """
        初始化 TextGenerator 类，加载模型、设置设备和分词器等。
        """
        # 模型加载配置
        self.checkpoint = checkpoint  # 保存的模型检查点路径
        self.tokenizer_model_path = tokenizer_model_path  # 分词器模型⽂件路径
        self.seed = seed  # 随机数种⼦，⽤于⽣成的可重复性



        self.device = device or ('cuda:0' if torch.cuda.is_available() else 'cpu')  # 根据
硬件条件选择设备
        self.dtype = dtype  # 模型的浮点数类型
        self.device_type = 'cuda' if 'cuda' in self.device else 'cpu'  # 判断当前设备是否为 

CUDA

        
        # 设置随机种⼦，确保⽣成的可重复性
        torch.manual_seed(seed)  # 设置 CPU 随机种⼦
        torch.cuda.manual_seed(seed)  # 设置 CUDA 随机种⼦
        torch.backends.cuda.matmul.allow_tf32 = True  # 允许 CUDA 使⽤ TF32 精度进⾏矩阵乘法运
算
        torch.backends.cudnn.allow_tf32 = True  # 允许 cuDNN 使⽤ TF32 精度加速
        
        # 根据 dtype 选择适当的⾃动混合精度上下⽂
        ptdtype = {'float32': torch.float32, 'bfloat16': torch.bfloat16, 'float16': 
torch.float16}[self.dtype]

        self.ctx = nullcontext() if self.device_type == 'cpu' else 
torch.amp.autocast(device_type=self.device_type, dtype=ptdtype)

        
        # 加载模型检查点⽂件
        checkpoint_dict = torch.load(self.checkpoint, map_location=self.device)  # 加载模型
参数 # 初始化模型参数
        self.model = Transformer(ModelConfig(dim=1024, n_layers=18))  # 实例化 Transformer 

模型
        sunwanted_prefix = '_orig_mod.'
        for k, v in list(checkpoint_dict.items()):
            if k.startswith(sunwanted_prefix):
                checkpoint_dict[k[len(sunwanted_prefix):]] = checkpoint_dict.pop(k)
        self.model.load_state_dict(checkpoint_dict, strict=False)
        
        # 计算模型参数量
        num_params = sum(p.numel() for p in self.model.parameters() if p.requires_grad)
        print(f"Model has {num_params / 1e6:.3f} M parameters.")
        # 设置模型为评估模式（evaluation mode），防⽌训练模式下的 dropout 等操作影响结果
        self.model.eval()
        # 将模型放置到正确的设备上（GPU 或 CPU）
        self.model.to(self.device)
        # 初始化分词器
        self.tokenizer = AutoTokenizer.from_pretrained(self.tokenizer_model_path)  # 根据指
定的路径加载分词器

    def chat_template(self, prompt):
        message = [
            {"role": "system", "content": "你是⼀个AI助⼿，你的名字叫⼩明。"},

            {"role": "user", "content": prompt}
        ]
        return self.tokenizer.apply_chat_template(message, tokenize=False, 
add_generation_prompt=True)

    def sft_sample(self, 
               start="Hello!",  # ⽣成⽂本的起始提示词，可以是任意字符串
               num_samples=3,  # ⽣成样本的数量，默认⽣成 3 个样本



               max_new_tokens=256,  # 每个样本⽣成的最⼤ token 数，默认最多⽣成 256 个 token
               temperature=0.7,  # 控制⽣成的随机性，1.0 为标准，值越⼤越随机
               top_k=300):  # 保留概率最⾼的 top_k 个 token，限制⽣成时的选择范围
        """
        根据给定的起始⽂本⽣成样本。
        
        :param start: ⽣成⽂本的起始提示词
        :param num_samples: 要⽣成的⽂本样本数
        :param max_new_tokens: 每个样本⽣成的最⼤ token 数
        :param temperature: 控制⽣成的随机性，值越⼩⽣成越确定，值越⼤⽣成越随机
        :param top_k: 限制⽣成时选择的 token 范围
        :return: ⽣成的⽂本样本列表
        """
        start = self.chat_template(start)
        # 将起始⽂本编码为 token id 序列
        start_ids = self.tokenizer(start).data['input_ids']
        # print('start_ids:', start_ids)
        x = (torch.tensor(start_ids, dtype=torch.long, device=self.device)[None, ...])  # 
将编码后的 token id 转为 PyTorch 张量
        generated_texts = []  # ⽤于保存⽣成的⽂本样本
        with torch.no_grad():  # 禁⽤梯度计算，提升效率
            with self.ctx:  # 进⼊⾃动混合精度的上下⽂（如果是 GPU 并使⽤ float16 时）
                for k in range(num_samples):  # 循环⽣成指定数量的样本
                    y = self.model.generate(x, self.tokenizer.eos_token_id, 
max_new_tokens, temperature=temperature, top_k=top_k)  # ⽣成⽂本
                    generated_texts.append(self.tokenizer.decode(y[0].tolist()))  # 解码⽣
成的 token 序列为可读⽂本
        return generated_texts  # 返回⽣成的⽂本样本

    def pretrain_sample(self, 
               start="Hello!",  # ⽣成⽂本的起始提示词，可以是任意字符串
               num_samples=3,  # ⽣成样本的数量，默认⽣成 3 个样本
               max_new_tokens=256,  # 每个样本⽣成的最⼤ token 数，默认最多⽣成 256 个 token
               temperature=0.7,  # 控制⽣成的随机性，1.0 为标准，值越⼤越随机
               top_k=300):  # 保留概率最⾼的 top_k 个 token，限制⽣成时的选择范围
        """
        根据给定的起始⽂本⽣成样本。
        
        :param start: ⽣成⽂本的起始提示词
        :param num_samples: 要⽣成的⽂本样本数
        :param max_new_tokens: 每个样本⽣成的最⼤ token 数
        :param temperature: 控制⽣成的随机性，值越⼩⽣成越确定，值越⼤⽣成越随机
        :param top_k: 限制⽣成时选择的 token 范围
        :return: ⽣成的⽂本样本列表
        """
        # 如果 start 是以 'FILE:' 开头，表示从⽂件中读取起始⽂本
        if start.startswith('FILE:'):
            with open(start[5:], 'r', encoding='utf-8') as f:
                start = f.read()  # 读取⽂件内容作为起始⽂本
        
        # 将起始⽂本编码为 token id 序列



最后我们来看⼀下模型输出的结果：

        start_ids = self.tokenizer(start).data['input_ids']
        # print('start_ids:', start_ids)
        x = (torch.tensor(start_ids, dtype=torch.long, device=self.device)[None, ...])  # 
将编码后的 token id 转为 PyTorch 张量
        # print(x.shape)
        generated_texts = []  # ⽤于保存⽣成的⽂本样本
        with torch.no_grad():  # 禁⽤梯度计算，提升效率
            with self.ctx:  # 进⼊⾃动混合精度的上下⽂（如果是 GPU 并使⽤ float16 时）
                for k in range(num_samples):  # 循环⽣成指定数量的样本
                    y = self.model.generate(x, max_new_tokens=max_new_tokens, 
temperature=temperature, top_k=top_k)  # ⽣成⽂本
                    generated_texts.append(self.tokenizer.decode(y[0].tolist()))  # 解码⽣
成的 token 序列为可读⽂本
        
        return generated_texts  # 返回⽣成的⽂本样本
    
if __name__ == "__main__":

    print("------------------- Pretrain Sample ------------------- \n")

    pretrain_prompt_datas = [
        '<|im_start|>北京⼤学是',
        '<|im_start|>中国矿业⼤学（北京）地球科学与测绘⼯程学院',

    ]

    generator = TextGenerator(checkpoint='./base_model_215M/pretrain_1024_18_6144.pth')  # 
初始化⽣成器
    for i in range(len(pretrain_prompt_datas)):
        samples = generator.pretrain_sample(start=pretrain_prompt_datas[i], num_samples=1, 
max_new_tokens=120, temperature=0.75)

        print(f"\nSample {i+1}:\n{pretrain_prompt_datas[i]}{samples[0]}\n{'-'*20}")  # 打
印⽣成的样本并⽤分隔线分割

    print("\n ------------------- SFT Sample ------------------- \n")

    sft_prompt_datas = [
        '你好呀',
        "中国的⾸都是哪⾥？",
        "1+12等于多少？",
        "你是谁？"
    ]
    generator = 
TextGenerator(checkpoint='./sft_model_215M/sft_dim1024_layers18_vocab_size6144.pth')  # 初
始化⽣成器
    for i in range(len(sft_prompt_datas)):
        samples = generator.sft_sample(start=sft_prompt_datas[i], num_samples=1, 
max_new_tokens=128, temperature=0.6)

        print(f"\nSample {i+1}:\nQuestion: {sft_prompt_datas[i]} \nAI answer: 
{samples[0]}\n{'-'*20}")  # 打印⽣成的样本并⽤分隔线分割



到这⾥，我们的模型就训练完成了，恭喜你训练了⼀个属于你⾃⼰的⼤模型。

⼤家在训练的时候可以将 batch 调的低⼀些，这样可以减少显存的占⽤，避免显存不⾜的问题。当然这样会
增加训练时间，可以根据⾃⼰的显卡显存⼤⼩来调整 batch 的⼤⼩。实测 Pretrain batch 为 4 的情况下只需
要 7G 显存，训练时⻓预计 533 ⼩时。作者是在 8卡4090 上进⾏训练的，预训练⼀共耗时 46 ⼩时，SFT 阶
段在 BelleGroup 350万条中⽂指令训练 24 ⼩时。

作者也在魔搭平台上传了本章节训来的模型，如果⼤家的设备不⾜以训练⼤模型，⼤家也可以在魔搭平台下载模型
进⾏调试和模型体验。模型下载地址如下：

ModelScope 模型下载地址：  ModelScope  
ModelScope 创空间体验地址：  创空间

参考资料

[1] Andrej Karpathy. (2023). llama2.c: Fullstack Llama 2 LLM solution in pure C. GitHub repository. https://githu
b.com/karpathy/llama2.c  

------------------- SFT Sample ------------------- 

Model has 215.127 M parameters.

Sample 1:

Question: 你好呀 
AI answer: 你好!有什么我可以帮你的吗?
--------------------

Sample 2:

Question: 中国的⾸都是哪⾥？ 
AI answer: 中国的⾸都是北京。
--------------------

Sample 3:

Question: 1+1等于多少？ 
AI answer: 1+1等于2。
--------------------

------------------- Pretrain Sample ------------------- 

Model has 215.127 M parameters.

Sample 1:

<|im_start|>北京⼤学是中国最早建⽴的研究型⼤学之⼀,是我国最早设置研究⽣院的⾼校之⼀,是第⼀、⼆国教育委员
会师资培训基地;北京⼤学是第⼀、⼆所国⽴⼤学,其校名与北京⼤学相同。
北京⼤学录取标准:本科三批1万元,本科⼀批1万元,本科⼀批2000元,专科⼀批2000元,⾼中起点:⾮本科⼀批
--------------------

Sample 2:

<|im_start|>中国矿业⼤学（北京）地球科学与测绘⼯程学院副教授⻩河流域地质学科带头⼈古建平教授为⼤家介绍世
界地质变化的概念及⼯作经验。
古建平教授介绍了最近⼏年的植物学和地质学的基本概念,尤其是树都⻩河、松涛、暗河等都有地质学⼯作者的身影,其中
树都⻩河以分布⾯积最⼤,是树都⻩河中华砂岩公园的主景区。
⻩河内蒙古
--------------------

https://www.modelscope.cn/collections/Happy-LLM-e98b91b10b684a
https://www.modelscope.cn/studios/kmno4zx/happy_llm_215M_sft
https://github.com/karpathy/llama2.c


[2] Andrej Karpathy. (2023). llm.c: GPT-2/GPT-3 pretraining in C/CUDA. GitHub repository. https://github.com/k
arpathy/llm.c  

[3] Hugging Face. (2023). Tokenizers documentation. https://huggingface.co/docs/tokenizers/index  

[4] Skywork Team. (2023). SkyPile-150B: A large-scale bilingual dataset. Hugging Face dataset. https://huggingf
ace.co/datasets/Skywork/SkyPile-150B  

[5] BelleGroup. (2022). train_3.5M_CN: Chinese dialogue dataset. Hugging Face dataset. https://huggingface.c
o/datasets/BelleGroup/train_3.5M_CN  

[6] Jingyao Gong. (2023). minimind: Minimalist LLM implementation. GitHub repository. https://github.com/jing
yaogong/minimind  

[7] Mobvoi. (2023). seq-monkey-data: Llama2 training/inference data. GitHub repository. https://github.com/m
obvoi/seq-monkey-data

https://github.com/karpathy/llm.c
https://huggingface.co/docs/tokenizers/index
https://huggingface.co/datasets/Skywork/SkyPile-150B
https://huggingface.co/datasets/BelleGroup/train_3.5M_CN
https://github.com/jingyaogong/minimind
https://github.com/mobvoi/seq-monkey-data


第六章 ⼤模型训练流程实践  
6.1 模型预训练  
在上⼀章，我们逐步拆解了 LLM 的模型结构及训练过程，从零⼿写实现了 LLaMA 模型结构及 Pretrain、SFT 全流
程，更深⼊地理解了 LLM 的模型原理及训练细节。但是，在实际应⽤中，⼿写实现的 LLM 训练存在以下问题：

⼿写实现 LLM 结构⼯作量⼤，难以实时跟进最新模型的结构创新；

从零实现的 LLM 训练⽆法较好地实现多卡分布式训练，训练效率较低；

和现有预训练 LLM 不兼容，⽆法使⽤预训练好的模型参数

因此，在本章中，我们将介绍⽬前 LLM 领域的主流训练框架 Transformers，并结合分布式框架 deepspeed、⾼
效微调框架 peft 等主流框架，实践使⽤ transformers 进⾏模型 Pretrain、SFT 全流程，更好地对接业界的主流 
LLM 技术⽅案。

6.1.1 框架介绍  

Transformers 是由 Hugging Face 开发的 NLP 框架，通过模块化设计实现了对 BERT、GPT、LLaMA、T5、ViT 等
上百种主流模型架构的统⼀⽀持。通过使⽤ Transformers，开发者⽆需重复实现基础⽹络结构，通过 AutoModel 
类即可⼀键加载任意预训练，图6.1 为 Hugging Face Transformers 课程⾸⻚：

图6.1 Hugging Face Transformers

同时，框架内置的 Trainer 类封装了分布式训练的核⼼逻辑，⽀持 PyTorch 原⽣ DDP、DeepSpeed、Megatron-
LM 等多种分布式训练策略。通过简单配置训练参数，即可实现数据并⾏、模型并⾏、流⽔线并⾏的混合并⾏训
练，在 8 卡 A100 集群上可轻松⽀持百亿参数模型的⾼效训练。配合 SavingPolicy 和 LoggingCallback 等组件，实
现了训练过程的⾃动化管理。其还⽀持与 Deepspeed、peft、wandb、Swanlab 等框架进⾏集成，直接通过参数
设置即可⽆缝对接，从⽽快速、⾼效实现 LLM 训练。

对 LLM 时代的 NLP 研究者更为重要的是，HuggingFace 基于 Transformers 框架搭建了其庞⼤的 AI 社区，开放
了数亿个预训练模型参数、25万+不同类型数据集，通过 Transformers、Dataset、Evaluate 等多个框架实现对预
训练模型、数据集及评估函数的集成，从⽽帮助开发者可以便捷地使⽤任⼀预训练模型，在开源模型及数据集的基
础上便捷地实现个⼈模型的开发与应⽤。



图6.2 Hugging Face Transformers 模型社区

在 LLM 时代，模型结构的调整和重新预训练越来越少，开发者更多的业务应⽤在于使⽤预训练好的 LLM 进⾏ Post 
Train 和 SFT，来⽀持⾃⼰的下游业务应⽤。且由于预训练模型体量⼤，便捷集成 deepspeed 等分布式训练框架逐
渐成为 LLM 时代 NLP 模型训练的必备技能。因此，Transformers 已逐步成为学界、业界 NLP 技术的主流框架，
不管是企业业务开发还是科研研究，都逐渐⾸选 Transformers 进⾏模型实现。同时，新发布的开源 LLM 如 
DeepSeek、Qwen 也都会第⼀时间在 Transformers 社区开放其预训练权重与模型调⽤ Demo。通过使⽤ 
Transformers 框架，可以⾼效、便捷地完成 LLM 训练及开发，实现⼯业级的产出交付。接下来，我们就会以 
Transformers 框架为基础，介绍如何通过 Transformers 框架实现 LLM 的 Pretrain 及 SFT。

6.1.2 初始化 LLM  

我们可以使⽤ transformers 的 AutoModel 类来直接初始化已经实现好的模型。对于任意预训练模型，其参数中
都包含有模型的配置信息。如果是想要从头训练⼀个 LLM，可以使⽤⼀个已有的模型架构来直接初始化。这⾥，我
们以 Qwen-2.5-1.5B的模型架构为例：

图6.3 Qwen-2.5-1.5B

https://huggingface.co/Qwen/Qwen2.5-1.5B/tree/main


该界⾯即为 HuggingFace 社区中的 Qwen-2.5-1.5B 模型参数，其中的 config.json  ⽂件即是模型的配置信息，
包括了模型的架构、隐藏层⼤⼩、模型层数等，如图6.4所示：

图6.4 Qwen-2.5-1.5B config.json ⽂件

我们可以沿⽤该模型的配置信息，初始化⼀个 Qwen-2.5-1.5B 模型来进⾏训练，也可以在该配置信息的基础上进
⾏更改，如修改隐藏层⼤⼩、注意⼒头数等，来定制⼀个模型结构。HuggingFace 提供了 Python ⼯具来便捷下载
想使⽤的模型参数：

如图6.5，此处的 “Qwen/Qwen2.5-1.5B”即为要下载模型的标识符，对于其他模型，可以直接复制 HuggingFace 
上的模型名即可：

import os

# 设置环境变量，此处使⽤ HuggingFace 镜像⽹站
os.environ['HF_ENDPOINT'] = 'https://hf-mirror.com'

# 下载模型
os.system('huggingface-cli download --resume-download Qwen/Qwen2.5-1.5B --local-dir 

your_local_dir')



图6.5 模型下载标识

下载完成后，可以使⽤ AutoConfig 类直接加载下载好的配置⽂件：

也可以对配置⽂件进⾏⾃定义，然后以同样的⽅式加载即可。可以使⽤ AutoModel 类基于加载好的配置对象⽣成
对应的模型：

由于 LLM ⼀般都是 CausalLM 架构，此处使⽤了 AutoModelForCausalLM 类进⾏加载。如果是⽤于分类任务训
练，可使⽤ AutoModelForSequenceClassification 类来加载。查看该 model，图6.6可以看到其架构和定义的配
置⽂件相同：

# 加载定义好的模型参数-此处以 Qwen-2.5-1.5B 为例
# 使⽤ transforemrs 的 Config 类进⾏加载
from transformers import AutoConfig

# 下载参数的本地路径
model_path = "qwen-1.5b"

config = AutoConfig.from_pretrained(model_name_or_path)

# 使⽤该配置⽣成⼀个定义好的模型
from transformers import AutoModelForCausalLM

model = AutoModelForCausalLM.from_config(config,trust_remote_code=True)



图6.6 模型结构输出结果

该 model 就是⼀个从零初始化的 Qwen-2.5-1.5B 模型了。⼀般情况下，我们很少从零初始化 LLM 进⾏预训练，较
多的做法是加载⼀个预训练好的 LLM 权重，在⾃⼰的语料上进⾏后训练。这⾥，我们也介绍如何从下载好的模型
参数中初始化⼀个预训练好的模型。

类似的，直接使⽤ from_pretrained ⽅法加载即可，此处的 model_name_or_path 即为下载好的参数的本地路
径。

我们还需要初始化⼀个 tokenizer。此处，我们直接使⽤ Qwen-2.5-1.5B 对应的 tokenizer 参数即可：

加载好的 tokenizer 即可直接使⽤，对任意⽂本进⾏分词处理。

6.1.3 预训练数据处理  

与第五章类似，我们使⽤出⻔问问序列猴⼦开源数据集作为预训练数据集，可以⽤与第五章⼀致的⽅式进⾏数据集
的下载和解压。HuggingFace 的 datasets 库是和 transformers 框架配套的、⽤于数据下载和处理的第三⽅库。
我们可以直接使⽤ datasets 的 load_dataset 函数来加载预训练数据：

from transformers import AutoModelForCausalLM

model = AutoModelForCausalLM.from_pretrained(model_name_or_path,trust_remote_code=True)

# 加载⼀个预训练好的 tokenizer

from transformers import AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained(model_name_or_path)



注意，由于数据集较⼤，加载可能会出现时间较⻓或内存不够的情况，建议前期测试时将预训练数据集拆分⼀部分
出来进⾏测试。加载出来的 ds 是⼀个 DatasetDict 对象，加载的数据会默认保存在 train  键对应的值中，可以通
过以下代码查看：

图6.7 数据集展示

可以通过 feature 属性查看数据集的特征（也就是列），这⾥需要保存⼀下数据集的列名，因为后续数据处理时，
再将⽂本 tokenize 之后，需要移除原先的⽂本：

接着使⽤加载好的 tokenizer 对数据集进⾏处理，此处使⽤ map 函数来进⾏批量处理：

处理完成后的数据集会包括'input_ids', 'attention_mask'两列，分别是⽂本 tokenize 之后的数值序列和注意⼒掩码
（标识是否 padding）。map ⽅法会通过 remove_columns 参数将原先的‘text’移除，训练中不再使⽤。

# 加载预训练数据
from datasets import load_dataset

ds = load_dataset('json', data_files='/mobvoi_seq_monkey_general_open_corpus.jsonl')

ds["train"][0]

# 查看特征
column_names = list(ds["train"].features)

# columnes_name:["text"]

# 对数据集进⾏ tokenize
def tokenize_function(examples):

    # 使⽤预先加载的 tokenizer 进⾏分词
    output = tokenizer([item for item in examples["text"]])
    return output

# 批量处理
tokenized_datasets = ds.map(

    tokenize_function,
    batched=True,
    num_proc=10,
    remove_columns=column_names,
    load_from_cache_file=True,
    desc="Running tokenizer on dataset",
)



由于预训练⼀般为 CLM 任务，⼀次性学习多个样本的序列语义不影响模型性能，且训练数据量⼤、训练时间⻓，
对训练效率要求⽐较⾼。在预训练过程中，⼀般会把多个⽂本段拼接在⼀起，处理成统⼀⻓度的⽂本块，再对每个
⽂本块进⾏训练。在这⾥，我们实现⼀个拼接函数将⽂本块拼接到 2048个 token ⻓度，再通过 map ⽅法来进⾏
批量处理：

处理得到的 train_dataset 就是⼀个可直接⽤于 CLM Pretrain 的预训练数据集了，其每个样本⻓度为 2048个 
token。

6.1.4 使⽤ Trainer 进⾏训练  

接下来，我们使⽤ transformers 提供的 Trainer 类进⾏训练。Trainer 封装了模型的训练逻辑，且做了较好的效率
优化、可视化等⼯作，可以⾼效、便捷地完成 LLM 的训练。

⾸先我们需要配置训练的超参数，使⽤ TrainingArguments 类来实例化⼀个参数对象：

# 预训练⼀般将⽂本拼接成固定⻓度的⽂本段
from itertools import chain

# 这⾥我们取块⻓为 2048

block_size = 2048

def group_texts(examples):

    # 将⽂本段拼接起来
    concatenated_examples = {k: list(chain(*examples[k])) for k in examples.keys()}
    # 计算拼起来的整体⻓度
    total_length = len(concatenated_examples[list(examples.keys())[0]])
    # 如果⻓度太⻓，进⾏分块
    if total_length >= block_size:
        total_length = (total_length // block_size) * block_size
    # 按 block_size 进⾏切分
    result = {
        k: [t[i : i + block_size] for i in range(0, total_length, block_size)]
        for k, t in concatenated_examples.items()
    }
    # CLM 任务，labels 和 input 是相同的
    result["labels"] = result["input_ids"].copy()
    return result

# 批量处理
lm_datasets = tokenized_datasets.map(

    group_texts,
    batched=True,
    num_proc=10,
    load_from_cache_file=True,
    desc=f"Grouping texts in chunks of {block_size}",
    batch_size = 40000,
)

train_dataset = lm_datasets["train"]



然后基于初始化的 model、tokenzier 和 training_args，并传⼊处理好的训练数据集，实例化⼀个 trainer 对象：

再使⽤ train ⽅法，即会按照配置好的训练超参进⾏训练和保存：

注：上述代码存放于 ./code/pretrain.ipynb  ⽂件中。

6.1.5 使⽤ DeepSpeed 实现分布式训练  

由于预训练规模⼤、时间⻓，⼀般不推荐使⽤ Jupyter Notebook 来运⾏，容易发⽣中断。且由于预训练规模⼤，
⼀般需要使⽤多卡进⾏分布式训练，否则训练时间太⻓。在这⾥，我们介绍如何基于上述代码，使⽤ DeepSpeed 
框架实现分布式训练，从⽽完成业界可⽤的 LLM Pretrain。

⻓时间训练⼀般使⽤ bash 脚本设定超参，再启动写好的 python 脚本实现训练。我们使⽤⼀个 Python 脚本
（ ./code/pretrain.py）来实现训练全流程。

先导⼊所需第三⽅库：

from transformers import TrainingArguments

# 配置训练参数

training_args = TrainingArguments(

    output_dir="output",# 训练参数输出路径
    per_device_train_batch_size=4,# 训练的 batch_size

    gradient_accumulation_steps=4,# 梯度累计步数，实际 bs = 设置的 bs * 累计步数
    logging_steps=10,# 打印 loss 的步数间隔
    num_train_epochs=1,# 训练的 epoch 数
    save_steps=100, # 保存模型参数的步数间隔
    learning_rate=1e-4,# 学习率
    gradient_checkpointing=True# 开启梯度检查点
)

from transformers import Trainer, default_data_collator

from torchdata.datapipes.iter import IterableWrapper

# 训练器
trainer = Trainer(

    model=model,
    args=training_args,
    train_dataset= IterableWrapper(train_dataset),
    eval_dataset= None,
    tokenizer=tokenizer,
    # 默认为 MLM 的 collator，使⽤ CLM 的 collater

    data_collator=default_data_collator
)

trainer.train()

import logging

import math

import os



⾸先需要定义⼏个超参的类型，⽤于处理 sh 脚本中设定的超参值。由于 transformers 本身有 
TraingingArguments 类，其中包括了训练的⼀些必备超参数。我们这⾥只需定义 TrainingArguments 中未包含的
超参即可，主要包括模型相关的超参（定义在 ModelArguments）和数据相关的超参（定义在 
DataTrainingArguments）：

import sys

from dataclasses import dataclass, field

from torchdata.datapipes.iter import IterableWrapper

from itertools import chain

import deepspeed

from typing import Optional,List

import datasets

import pandas as pd

import torch

from datasets import load_dataset

import transformers

from transformers import (

    AutoConfig,
    AutoModelForCausalLM,
    AutoTokenizer,
    HfArgumentParser,
    Trainer,
    TrainingArguments,
    default_data_collator,
    set_seed,
)

import datetime

from transformers.testing_utils import CaptureLogger

from transformers.trainer_utils import get_last_checkpoint

import swanlab

# 超参类
@dataclass

class ModelArguments:

    """
    关于模型的参数
    """

    model_name_or_path: Optional[str] = field(
        default=None,
        metadata={
            "help": (
                "后训练使⽤，为预训练模型参数地址"
            )
        },
    )
    config_name: Optional[str] = field(
        default=None, metadata={"help": "预训练使⽤，Config ⽂件地址"}

    )
    tokenizer_name: Optional[str] = field(



然后即可定义⼀个主函数实现上述训练过程的封装。⾸先通过 transformers 提供的 HfArgumentParser ⼯具来加
载 sh 脚本中设定的超参：

在⼤规模的训练中，⼀般使⽤ log 来保存训练过程的信息，⼀般不推荐使⽤ print 直接打印，容易发⽣关键训练信
息的丢失。这⾥，我们直接使⽤ python ⾃带的 logging 库来实现⽇志记录。⾸先需要进⾏ log 的设置：

        default=None, metadata={"help": "预训练 Tokenizer 地址"}

    )
    torch_dtype: Optional[str] = field(
        default=None,
        metadata={
            "help": (
                "模型训练使⽤的数据类型，推荐 bfloat16"
            ),
            "choices": ["auto", "bfloat16", "float16", "float32"],
        },
    )

@dataclass

class DataTrainingArguments:

    """
    关于训练的参数
    """

    train_files: Optional[List[str]]  = field(default=None, metadata={"help": "训练数据路
径"})

    block_size: Optional[int] = field(
        default=None,
        metadata={
            "help": (
                "设置的⽂本块⻓度"
            )
        },
    )
    preprocessing_num_workers: Optional[int] = field(
        default=None,
        metadata={"help": "预处理使⽤线程数."},
    )

# 加载脚本参数
parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments))

model_args, data_args, training_args = parser.parse_args_into_dataclasses()

# 设置⽇志
logging.basicConfig(

    format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
    datefmt="%m/%d/%Y %H:%M:%S",
    handlers=[logging.StreamHandler(sys.stdout)],
)



这⾥将⽇志的级别设置为 INFO。logging 的⽇志共有 DEBUG、INFO、WARNING、ERROR 以及 CRITICAL 五个级
别，将⽇志设置为哪个级别，就会只输出该级别及该级别之上的信息。设置完成后，在需要记录⽇志的地⽅，直接
使⽤ logger 即可，记录时会指定记录⽇志的级别，例如：

后续就不再赘述脚本中的⽇志记录。

在⼤规模训练中，发⽣中断是往往难以避免的，训练⼀般会固定间隔保存 checkpoint，中断之后基于最近的 
checkpoint 恢复训练即可。因此，我们需要⾸先检测是否存在旧的 checkpoint 并从 checkpoint 恢复训练：

接着以上⽂介绍过的⽅式初始化模型，此处将从零初始化和基于已有预训练模型初始化包装在⼀起：

# 将⽇志级别设置为 INFO

transformers.utils.logging.set_verbosity_info()

log_level = training_args.get_process_log_level()

logger.setLevel(log_level)

datasets.utils.logging.set_verbosity(log_level)

transformers.utils.logging.set_verbosity(log_level)

transformers.utils.logging.enable_default_handler()

transformers.utils.logging.enable_explicit_format()

# 训练整体情况记录
logger.warning(

    f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: 
{training_args.n_gpu}"

    + f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: 
{training_args.fp16}"

)

logger.info(f"Training/evaluation parameters {training_args}")

# 检查 checkpoint

last_checkpoint = None

if os.path.isdir(training_args.output_dir):

    # 使⽤ transformers ⾃带的 get_last_checkpoint ⾃动检测
    last_checkpoint = get_last_checkpoint(training_args.output_dir)
    if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0:
        raise ValueError(
            f"输出路径 ({training_args.output_dir}) ⾮空 "

        )
    elif last_checkpoint is not None and training_args.resume_from_checkpoint is None:
        logger.info(
            f"从 {last_checkpoint}恢复训练"

        )

# 初始化模型
if model_args.config_name is not None:

    # from scrach
    config = AutoConfig.from_pretrained(model_args.config_name)
    logger.warning("你正在从零初始化⼀个模型")
    logger.info(f"模型参数配置地址：{model_args.config_name}")

    logger.info(f"模型参数：{config}")



再类似的进⾏ tokenizer 的加载和预训练数据的处理。该部分和上⽂完全⼀致，此处不再赘述，读者可以在代码中
详细查看细节。类似的，使⽤ Trainer 进⾏训练：

注意，由于上⽂检测了是否存在 checkpoint，此处使⽤ resume_from_checkpoint 来实现从 checkpoint 恢复训练
的功能。

由于在⼤规模训练中监测训练进度、loss 下降趋势尤为重要，在脚本中，我们使⽤了 swanlab 作为训练检测的⼯
具。在脚本开始进⾏了 swanlab 的初始化：

在启动训练后，终端会输出 swanlab 监测的 url，点击即可观察训练进度。此处不再赘述 swanlab 的使⽤细节，欢
迎读者查阅相关的资料说明。

    model = AutoModelForCausalLM.from_config(config,trust_remote_code=True)
    n_params = sum({p.data_ptr(): p.numel() for p in model.parameters()}.values())
    logger.info(f"预训练⼀个新模型 - Total size={n_params/2**20:.2f}M params")
elif model_args.model_name_or_path is not None:

    logger.warning("你正在初始化⼀个预训练模型")

    logger.info(f"模型参数地址：{model_args.model_name_or_path}")

    model = 
AutoModelForCausalLM.from_pretrained(model_args.model_name_or_path,trust_remote_code=True)

    n_params = sum({p.data_ptr(): p.numel() for p in model.parameters()}.values())
    logger.info(f"继承⼀个预训练模型 - Total size={n_params/2**20:.2f}M params")

else:

    logger.error("config_name 和 model_name_or_path 不能均为空")

    raise ValueError("config_name 和 model_name_or_path 不能均为空")

logger.info("初始化 Trainer")
trainer = Trainer(

    model=model,
    args=training_args,
    train_dataset= IterableWrapper(train_dataset),
    tokenizer=tokenizer,
    data_collator=default_data_collator
)

# 从 checkpoint 加载
checkpoint = None

if training_args.resume_from_checkpoint is not None:

    checkpoint = training_args.resume_from_checkpoint
elif last_checkpoint is not None:

        checkpoint = last_checkpoint

logger.info("开始训练")
train_result = trainer.train(resume_from_checkpoint=checkpoint)

trainer.save_model() 

# 初始化 SwanLab
swanlab.init(project="pretrain", experiment_name="from_scrach")



完成上述代码后，我们使⽤⼀个 sh 脚本（ ./code/pretrain.sh）定义超参数的值，并通过 Deepspeed 启动训
练，从⽽实现⾼效的多卡分布式训练：

在安装了 Deepspeed 第三⽅库后，可以直接通过 Deepspeed 命令来启动多卡训练。上述脚本命令主要是定义了
各种超参数的值，可参考使⽤。在第四章中，我们介绍了 DeepSpeed 分布式训练的原理和 ZeRO 阶段设置，在这
⾥，我们使⽤ ZeRO-2 进⾏训练。此处加载了 ds_config_zero.json  作为 DeepSpeed 的配置参数：

# 设置可⻅显卡
CUDA_VISIBLE_DEVICES=0,1

deepspeed pretrain.py \

    --config_name autodl-tmp/qwen-1.5b \
    --tokenizer_name autodl-tmp/qwen-1.5b \
    --train_files autodl-
tmp/dataset/pretrain_data/mobvoi_seq_monkey_general_open_corpus_small.jsonl \

    --per_device_train_batch_size 16 \
    --gradient_accumulation_steps 4 \
    --do_train \
    --output_dir autodl-tmp/output/pretrain \
    --evaluation_strategy  no \
    --learning_rate 1e-4 \
    --num_train_epochs 1 \
    --warmup_steps 200 \
    --logging_dir autodl-tmp/output/pretrain/logs \
    --logging_strategy steps \
    --logging_steps 5 \
    --save_strategy steps \
    --save_steps 100 \
    --preprocessing_num_workers 10 \
    --save_total_limit 1 \
    --seed 12 \
    --block_size 2048 \
    --bf16 \
    --gradient_checkpointing \
    --deepspeed ./ds_config_zero2.json \
    --report_to swanlab
    # --resume_from_checkpoint ${output_model}/checkpoint-20400 \

{

    "fp16": {
        "enabled": "auto",
        "loss_scale": 0,
        "loss_scale_window": 1000,
        "initial_scale_power": 16,
        "hysteresis": 2,
        "min_loss_scale": 1
    },
    "bf16": {
        "enabled": "auto"
    },
    "optimizer": {



最后，在终端 bash 运⾏该 pretrain.sh  脚本即可开始训练。

6.2 模型有监督微调  
在上⼀节，我们介绍了如何使⽤ Transformers 框架快速、⾼效地进⾏模型预训练。在本部分，我们将基于上部分
内容，介绍如何使⽤ Transformers 框架对预训练好的模型进⾏有监督微调。

6.2.1 Pretrain VS SFT  

        "type": "AdamW",
        "params": {
            "lr": "auto",
            "betas": "auto",
            "eps": "auto",
            "weight_decay": "auto"
        }
    },

    "scheduler": {
        "type": "WarmupLR",
        "params": {
            "warmup_min_lr": "auto",
            "warmup_max_lr": "auto",
            "warmup_num_steps": "auto"
        }
    },

    "zero_optimization": {
        "stage": 2,
        "offload_optimizer": {
            "device": "none",
            "pin_memory": true
        },
        "allgather_partitions": true,
        "allgather_bucket_size": 2e8,
        "overlap_comm": true,
        "reduce_scatter": true,
        "reduce_bucket_size": 2e8,
        "contiguous_gradients": true
    },

    "gradient_accumulation_steps": "auto",
    "gradient_clipping": "auto",
    "steps_per_print": 100,
    "train_batch_size": "auto",
    "train_micro_batch_size_per_gpu": "auto",
    "wall_clock_breakdown": false
}



⾸先需要回顾⼀下，对 LLM 进⾏预训练和进⾏有监督微调的核⼼差异在于什么。在第四章中提到过，⽬前成型的 
LLM ⼀般通过 Pretrain-SFT-RLHF 三个阶段来训练，在 Pretrain 阶段，会对海量⽆监督⽂本进⾏⾃监督建模，来
学习⽂本语义规则和⽂本中的世界知识；在 SFT 阶段，⼀般通过对 Pretrain 好的模型进⾏指令微调，即训练模型
根据⽤户指令完成对应任务，从⽽使模型能够遵循⽤户指令，根据⽤户指令进⾏规划、⾏动和输出。因此，
Pretrain 和 SFT 均使⽤ CLM 建模，其核⼼差异在于，Pretrain 使⽤海量⽆监督⽂本进⾏训练，模型直接对⽂本执
⾏“预测下⼀个 token”的任务；⽽ SFT 使⽤构建成对的指令对数据，模型根据输⼊的指令，建模后续的输出。反映
到具体的训练实现上，Pretrain 会对全部 text 进⾏ loss 计算，要求模型对整个⽂本实现建模预测；⽽ SFT 仅对输
出进⾏ loss 计算，不计算指令部分的 loss。

因此，相较于上⼀节完成的 Pretrain 代码，SFT 部分仅需要修改数据处理环节，实现对指令对数据转化为训练样本
的构建，其余部分和 Pretrain 是完全⼀致的实现逻辑。本部分代码脚本为 ./code/finetune.py。

6.2.2 微调数据处理  

同样与第五章类似，我们此处使⽤⻉壳开源的 BelleGroup 数据集进⾏ SFT。

在 SFT 过程中，我们会定义⼀个 Chat Template，这个 Template 即表示了如何将对话数据转化为⼀个模型可以建
模拟合的⽂本序列。当我们使⽤做过 SFT 的模型进⾏下游任务微调时，⼀般需要查看该模型的 Chat Template 并
进⾏适配，即是为了不损伤其在 SFT 中学到的指令遵循能⼒。由于我们此处使⽤ Pretrain 模型进⾏ SFT，可以⾃定
义⼀个 Chat Template。由于我们使⽤了 Qwen-2.5-1.5B 模型结构进⾏ Pretrain，此处我们沿承使⽤ Qwen-2.5 
的 Chat Template。如果读者没有⾜够的资源进⾏上⼀部分模型的 Pretrain 的话，此处也可以使⽤官⽅的 Qwen-
2.5-1.5B 模型作为 SFT 的基座模型。

我们⾸先定义⼏个特殊 token，特殊 token 在模型进⾏拟合中有特殊的作⽤，包括⽂本序列开始（BOS）、⽂本序
列结束（EOS）、换⾏符等。定义特殊 token，有助于避免模型在拟合过程中的语义混淆：

Qwen 系列的 Chat Template ⼀般有三个对话⻆⾊：System、User 和 Assistant。System 是系统提示词，负责激
活模型的能⼒，默认为“You are a helpful assistant.”，⼀般不会在 SFT 过程中更改使⽤。User 即为⽤户给出的提
示词，此处由于数据集中的对话⻆⾊为 “human”，我们将 “user” 修改为了“human”。Assistant 即为 LLM 给出的
回复，也就是模型在 SFT 过程中需要拟合的⽂本。

接着，由于该数据集是⼀个多轮对话数据集，我们需要对多轮对话进⾏拼接处理，将多轮对话拼接到⼀个⽂本序列
中：

# 不同的 tokenizer 需要特别定义
# BOS

im_start = tokenizer("<|im_start|>").input_ids

# EOS

im_end = tokenizer("<|im_end|>").input_ids

# PAD

IGNORE_TOKEN_ID = tokenizer.pad_token_id

# 换⾏符
nl_tokens = tokenizer('\n').input_ids

# ⻆⾊标识符
_system = tokenizer('system').input_ids + nl_tokens

_user = tokenizer('human').input_ids + nl_tokens

_assistant = tokenizer('assistant').input_ids + nl_tokens

# 拼接多轮对话



上述代码沿承了 Qwen 的 Chat Template 逻辑，读者也可以根据⾃⼰的偏好进⾏修改，其核⼼点在于 User 的⽂本
不需要拟合，因此 targets 中 User 对应的⽂本内容是使⽤的 IGNORE_TOKEN_ID 进⾏遮蔽，⽽ Assistant 对应的
⽂本内容则是⽂本原⽂，是需要计算 loss 的。⽬前主流 LLM IGNORE_TOKEN_ID ⼀般设置为 -100。

完成拼接后，将 tokenize 后的数值序列转化为 Torch.tensor，再拼接成 Dataset 所需的字典返回即可：

input_ids, targets = [], []

# 多个样本
for i in tqdm(range(len(sources))):

    # source 为⼀个多轮对话样本
    source = sources[i]
    # 从 user 开始
    if source[0]["from"] != "human":
        source = source[1:]
    # 分别是输⼊和输出
    input_id, target = [], []
    # system: 【BOS】system\nYou are a helpful assistant.【EOS】\n
    system = im_start + _system + tokenizer(system_message).input_ids + im_end + nl_tokens
    input_id += system
    # system 不需要拟合
    target += im_start + [IGNORE_TOKEN_ID] * (len(system)-3) + im_end + nl_tokens
    assert len(input_id) == len(target)
    # 依次拼接
    for j, sentence in enumerate(source):
        # sentence 为⼀轮对话
        role = roles[sentence["from"]]
        # user：<|im_start|>human\ninstruction【EOS】\n
        # assistant：<|im_start|>assistant\nresponse【EOS】\n
        _input_id = tokenizer(role).input_ids + nl_tokens + \
            tokenizer(sentence["value"]).input_ids + im_end + nl_tokens
        input_id += _input_id
        if role == '<|im_start|>human':
            # user 不需要拟合
            _target = im_start + [IGNORE_TOKEN_ID] * (len(_input_id)-3) + im_end + 
nl_tokens

        elif role == '<|im_start|>assistant':
            # assistant 需要拟合
            _target = im_start + [IGNORE_TOKEN_ID] * len(tokenizer(role).input_ids) + \
                _input_id[len(tokenizer(role).input_ids)+1:-2] + im_end + nl_tokens
        else:
            print(role)
            raise NotImplementedError
        target += _target
    assert len(input_id) == len(target)
    # 最后进⾏ PAD
    input_id += [tokenizer.pad_token_id] * (max_len - len(input_id))
    target += [IGNORE_TOKEN_ID] * (max_len - len(target))
    input_ids.append(input_id[:max_len])
    targets.append(target[:max_len])



完成上述处理逻辑后，需要⾃定义⼀个 Dataset 类，在该类中调⽤该逻辑进⾏数据的处理：

该类继承⾃ Torch 的 Dataset 类，可以直接在 Trainer 中使⽤。完成数据处理后，基于上⼀节脚本，修改数据处理
逻辑即可，后续模型训练等⼏乎完全⼀致，此处附上主函数逻辑：

input_ids = torch.tensor(input_ids)

targets = torch.tensor(targets)

return dict(

    input_ids=input_ids,
    labels=targets,
    attention_mask=input_ids.ne(tokenizer.pad_token_id),
)

class SupervisedDataset(Dataset):

    def __init__(self, raw_data, tokenizer, max_len: int):
        super(SupervisedDataset, self).__init__()
        # 加载并预处理数据
        sources = [example["conversations"] for example in raw_data]
        # preprocess 即上⽂定义的数据预处理逻辑
        data_dict = preprocess(sources, tokenizer, max_len)

        self.input_ids = data_dict["input_ids"]
        self.labels = data_dict["labels"]
        self.attention_mask = data_dict["attention_mask"]

    def __len__(self):
        return len(self.input_ids)

    def __getitem__(self, i) -> Dict[str, torch.Tensor]:
        return dict(
            input_ids=self.input_ids[i],
            labels=self.labels[i],
            attention_mask=self.attention_mask[i],
        )

# 加载脚本参数
parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments))

model_args, data_args, training_args = parser.parse_args_into_dataclasses()

# 初始化 SwanLab
swanlab.init(project="sft", experiment_name="qwen-1.5b")

# 设置⽇志
logging.basicConfig(

    format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
    datefmt="%m/%d/%Y %H:%M:%S",
    handlers=[logging.StreamHandler(sys.stdout)],
)



# 将⽇志级别设置为 INFO
transformers.utils.logging.set_verbosity_info()

log_level = training_args.get_process_log_level()

logger.setLevel(log_level)

datasets.utils.logging.set_verbosity(log_level)

transformers.utils.logging.set_verbosity(log_level)

transformers.utils.logging.enable_default_handler()

transformers.utils.logging.enable_explicit_format()

# 训练整体情况记录
logger.warning(

    f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: 
{training_args.n_gpu}"

    + f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: 
{training_args.fp16}"

)

logger.info(f"Training/evaluation parameters {training_args}")

# 检查 checkpoint
last_checkpoint = None

if os.path.isdir(training_args.output_dir):

    last_checkpoint = get_last_checkpoint(training_args.output_dir)
    if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0:
        raise ValueError(
            f"输出路径 ({training_args.output_dir}) ⾮空 "
        )
    elif last_checkpoint is not None and training_args.resume_from_checkpoint is None:
        logger.info(
            f"从 {last_checkpoint}恢复训练"

        )

# 设置随机数种⼦.
set_seed(training_args.seed)

# 初始化模型
logger.warning("加载预训练模型")
logger.info(f"模型参数地址：{model_args.model_name_or_path}")

model = 

AutoModelForCausalLM.from_pretrained(model_args.model_name_or_path,trust_remote_code=True)

n_params = sum({p.data_ptr(): p.numel() for p in model.parameters()}.values())

logger.info(f"继承⼀个预训练模型 - Total size={n_params/2**20:.2f}M params")

# 初始化 Tokenizer
tokenizer = AutoTokenizer.from_pretrained(model_args.model_name_or_path)

logger.info("完成 tokenizer 加载")

# 加载微调数据
with open(data_args.train_files) as f:

    lst = [json.loads(line) for line in f.readlines()[:10000]]
logger.info("完成训练集加载")

logger.info(f"训练集地址：{data_args.train_files}")



启动⽅式也同样在 sh 脚本中使⽤ deepspeed 启动即可，此处不再赘述，源码⻅ ./code/finetune.sh。

6.3 ⾼效微调  
在前⾯⼏节，我们详细介绍了基于 Transformers 框架对模型进⾏ Pretrain、SFT 以及 RLHF 的原理和实践细节。
但是，由于 LLM 参数量⼤，训练数据多，通过上述⽅式对模型进⾏训练（主要指 SFT 及 RLHF）需要调整模型全部
参数，资源压⼒⾮常⼤。对资源有限的企业或课题组来说，如何⾼效、快速对模型进⾏领域或任务的微调，以低成
本地使⽤ LLM 完成⽬标任务，是⾮常重要的。

6.3.1 ⾼效微调⽅案  

针对全量微调的昂贵问题，⽬前主要有两种解决⽅案：

Adapt Tuning。即在模型中添加 Adapter 层，在微调时冻结原参数，仅更新 Adapter 层。

具体⽽⾔，其在预训练模型每层中插⼊⽤于下游任务的参数，即 Adapter 模块，在微调时冻结模型主体，仅训练特
定于任务的参数，如图6.8所示。

logger.info(f'训练样本总数:{len(lst)}')
# logger.info(f"训练集采样：{ds["train"][0]}")

train_dataset = SupervisedDataset(lst, tokenizer=tokenizer, max_len=2048)

logger.info("初始化 Trainer")

trainer = Trainer(

    model=model,
    args=training_args,
    train_dataset= IterableWrapper(train_dataset),
    tokenizer=tokenizer
)

# 从 checkpoint 加载
checkpoint = None

if training_args.resume_from_checkpoint is not None:

    checkpoint = training_args.resume_from_checkpoint
elif last_checkpoint is not None:

        checkpoint = last_checkpoint

logger.info("开始训练")

train_result = trainer.train(resume_from_checkpoint=checkpoint)

trainer.save_model() 



图6.8 Adapt Tuning

每个 Adapter 模块由两个前馈⼦层组成，第⼀个前馈⼦层将 Transformer 块的输出作为输⼊，将原始输⼊维度  
投影到 ，通过控制  的⼤⼩来限制 Adapter 模块的参数量，通常情况下 。在输出阶段，通过第⼆个
前馈⼦层还原输⼊维度，将  重新投影到 ，作为 Adapter 模块的输出(如上图右侧结构)。

LoRA 事实上就是⼀种改进的 Adapt Tuning ⽅法。但 Adapt Tuning ⽅法存在推理延迟问题，由于增加了额外参数
和额外计算量，导致微调之后的模型计算速度相较原预训练模型更慢。

Prefix Tuning。该种⽅法固定预训练 LM，为 LM 添加可训练，任务特定的前缀，这样就可以为不同任务保存不同
的前缀，微调成本也⼩。具体⽽⾔，在每⼀个输⼊ token 前构造⼀段与下游任务相关的 virtual tokens 作为 
prefix，在微调时只更新 prefix 部分的参数，⽽其他参数冻结不变。

也是⽬前常⽤的微量微调⽅法的 Ptuning，其实就是 Prefix Tuning 的⼀种改进。但 Prefix Tuning 也存在固定的缺
陷：模型可⽤序列⻓度减少。由于加⼊了 virtual tokens，占⽤了可⽤序列⻓度，因此越⾼的微调质量，模型可⽤
序列⻓度就越低。

6.3.2 LoRA 微调  

如果⼀个⼤模型是将数据映射到⾼维空间进⾏处理，这⾥假定在处理⼀个细分的⼩任务时，是不需要那么复杂的⼤
模型的，可能只需要在某个⼦空间范围内就可以解决，那么也就不需要对全量参数进⾏优化了，我们可以定义当对
某个⼦空间参数进⾏优化时，能够达到全量参数优化的性能的⼀定⽔平（如90%精度）时，那么这个⼦空间参数矩
阵的秩就可以称为对应当前待解决问题的本征秩（intrinsic rank）。

预训练模型本身就隐式地降低了本征秩，当针对特定任务进⾏微调后，模型中权重矩阵其实具有更低的本征秩
（intrinsic rank）。同时，越简单的下游任务，对应的本征秩越低。（Intrinsic Dimensionality Explains the 
Effectiveness of Language Model Fine-Tuning）因此，权重更新的那部分参数矩阵尽管随机投影到较⼩的⼦空
间，仍然可以有效的学习，可以理解为针对特定的下游任务这些权重矩阵就不要求满秩。我们可以通过优化密集层

https://arxiv.org/abs/2012.13255


在适应过程中变化的秩分解矩阵来间接训练神经⽹络中的⼀些密集层，从⽽实现仅优化密集层的秩分解矩阵来达到
微调效果。

例如，假设预训练参数为 ，在特定下游任务上密集层权重参数矩阵对应的本征秩为 ，对应特定下游任务微调
参数为 ，那么有：

这个  即为 LoRA 优化的秩分解矩阵。

想对于其他⾼效微调⽅法，LoRA 存在以下优势：

1. 可以针对不同的下游任务构建⼩型 LoRA 模块，从⽽在共享预训练模型参数基础上有效地切换下游任务。

2. LoRA 使⽤⾃适应优化器（Adaptive Optimizer），不需要计算梯度或维护⼤多数参数的优化器状态，训练更
有效、硬件⻔槛更低。

3. LoRA 使⽤简单的线性设计，在部署时将可训练矩阵与冻结权重合并，不存在推理延迟。

4. LoRA 与其他⽅法正交，可以组合。

因此，LoRA 成为⽬前⾼效微调 LLM 的主流⽅法，尤其是对于资源受限、有监督训练数据受限的情况下，LoRA 微
调往往会成为 LLM 微调的⾸选⽅法。

6.3.3 LoRA 微调的原理  

（1）低秩参数化更新矩阵  

LoRA 假设权重更新的过程中也有⼀个较低的本征秩，对于预训练的权重参数矩阵  (  为上⼀层输出维
度，  为下⼀层输⼊维度)，使⽤低秩分解来表示其更新：

在训练过程中，  冻结不更新， 、  包含可训练参数。

因此，LoRA 的前向传递函数为：

在开始训练时，对  使⽤随机⾼斯初始化，对  使⽤零初始化，然后使⽤ Adam 进⾏优化。

训练思路如图6.9所示：



图6.9 LoRA

（2）应⽤于 Transformer  

在 Transformer 结构中，LoRA 技术主要应⽤在注意⼒模块的四个权重矩阵： 、 、 、 ，⽽冻结 MLP 
的权重矩阵。

通过消融实验发现同时调整  和  会产⽣最佳结果。

在上述条件下，可训练参数个数为：

其中，  为应⽤ LoRA 的权重矩阵的个数，  为 Transformer 的输⼊输出维度，  为设定的 LoRA 秩。

⼀般情况下，r 取到 4、8、16。

6.3.4 LoRA 的代码实现  

⽬前⼀般通过 peft 库来实现模型的 LoRA 微调。peft 库是 huggingface 开发的第三⽅库，其中封装了包括 LoRA、
Adapt Tuning、P-tuning 等多种⾼效微调⽅法，可以基于此便捷地实现模型的 LoRA 微调。

本⽂简单解析 peft 库中的 LoRA 微调代码，简单分析 LoRA 微调的代码实现。

（1）实现流程  

LoRA 微调的内部实现流程主要包括以下⼏个步骤：



1. 确定要使⽤ LoRA 的层。peft 库⽬前⽀持调⽤ LoRA 的层包括：nn.Linear、nn.Embedding、nn.Conv2d 三
种。

2. 对每⼀个要使⽤ LoRA 的层，替换为 LoRA 层。所谓 LoRA 层，实则是在该层原结果基础上增加了⼀个旁路，
通过低秩分解（即矩阵  和矩阵 ）来模拟参数更新。

3. 冻结原参数，进⾏微调，更新 LoRA 层参数。

（2）确定 LoRA 层  

在进⾏ LoRA 微调时，⾸先需要确定 LoRA 微调参数，其中⼀个重要参数即是 target_modules。target_modules 
⼀般是⼀个字符串列表，每⼀个字符串是需要进⾏ LoRA 的层名称，例如：

这⾥的 q_proj 即为注意⼒机制中的 ， v_proj 即为注意⼒机制中的 。我们可以根据模型架构和任务要求⾃
定义需要进⾏ LoRA 操作的层。

在创建 LoRA 模型时，会获取该参数，然后在原模型中找到对应的层，该操作主要通过使⽤ re 对层名进⾏正则匹
配实现：

（3）替换 LoRA 层  

对于找到的每⼀个⽬标层，会创建⼀个新的 LoRA 层进⾏替换。

LoRA 层在具体实现上，是定义了⼀个基于 Lora 基类的 Linear 类，该类同时继承了 nn.Linear 和 LoraLayer。
LoraLayer 即是 Lora 基类，其主要构造了 LoRA 的各种超参：

target_modules = ["q_proj","v_proj"]

# 找到模型的各个组件中，名字⾥带"q_proj"，"v_proj"的
target_module_found = re.fullmatch(self.peft_config.target_modules, key)

# 这⾥的 key，是模型的组件名

class LoraLayer:

    def __init__(
        self,
        r: int, # LoRA 的秩
        lora_alpha: int, # 归⼀化参数
        lora_dropout: float, # LoRA 层的 dropout ⽐例
        merge_weights: bool, # eval 模式中，是否将 LoRA 矩阵的值加到原权重矩阵上
    ):
        self.r = r
        self.lora_alpha = lora_alpha
        # Optional dropout
        if lora_dropout > 0.0:
            self.lora_dropout = nn.Dropout(p=lora_dropout)
        else:
            self.lora_dropout = lambda x: x
        # Mark the weight as unmerged
        self.merged = False
        self.merge_weights = merge_weights
        self.disable_adapters = False



nn.Linear 就是 Pytorch 的线性层实现。Linear 类就是具体的 LoRA 层，其主要实现如下：

替换时，直接将原层的 weight 和 bias 复制给新的 LoRA 层，再将新的 LoRA 层分配到指定设备即可。

（4）训练  

实现了 LoRA 层的替换后，进⾏微调训练即可。由于在 LoRA 层中已冻结原参数，在训练中只有 A 和 B 的参数会被
更新，从⽽实现了⾼效微调。训练的整体过程与原 Fine-tune 类似，此处不再赘述。由于采⽤了 LoRA ⽅式，
forward 函数也会对应调整：

class Linear(nn.Linear, LoraLayer):

    # LoRA 层
    def __init__(
        self,
        in_features: int,
        out_features: int,
        r: int = 0,
        lora_alpha: int = 1,
        lora_dropout: float = 0.0,
        fan_in_fan_out: bool = False, 
        merge_weights: bool = True,
        **kwargs,
    ):
        # 继承两个基类的构造函数
        nn.Linear.__init__(self, in_features, out_features, **kwargs)
        LoraLayer.__init__(self, r=r, lora_alpha=lora_alpha, lora_dropout=lora_dropout, 
merge_weights=merge_weights)

        self.fan_in_fan_out = fan_in_fan_out
        # Actual trainable parameters
        if r > 0:
            # 参数矩阵 A

            self.lora_A = nn.Linear(in_features, r, bias=False)
            # 参数矩阵 B

            self.lora_B = nn.Linear(r, out_features, bias=False)
            # 归⼀化系数
            self.scaling = self.lora_alpha / self.r
            # 冻结原参数，仅更新 A 和 B

            self.weight.requires_grad = False
        # 初始化 A 和 B

        self.reset_parameters()
        if fan_in_fan_out:
            self.weight.data = self.weight.data.T

    def forward(self, x: torch.Tensor):
        if self.disable_adapters:
            if self.r > 0 and self.merged:
                self.weight.data -= (



上述代码由于考虑到参数合并问题，有⼏个分⽀，此处我们仅阅读第⼆个分⽀即 elif 分⽀即可。基于 LoRA 的前向
计算过程如前⽂公式所示，⾸先计算原参数与输⼊的乘积，再加上 A、B 分别与输⼊的乘积即可。

6.3.5 使⽤ peft 实现 LoRA 微调  

peft 进⾏了很好的封装，⽀持我们便捷、⾼效地对⼤模型进⾏微调。此处以第⼆节的 LLM SFT 为例，简要介绍如
何使⽤ peft 对⼤模型进⾏微调。如果是应⽤在 RLHF 上，整体思路是⼀致的。

⾸先加载所需使⽤库：

其次加载原模型与原 tokenizer，此处和第⼆节⼀致：

接着，设定 peft 参数：

                    transpose(self.lora_B.weight @ self.lora_A.weight, 
self.fan_in_fan_out) * self.scaling

                )
                self.merged = False

            return F.linear(x, transpose(self.weight, self.fan_in_fan_out), 
bias=self.bias)

        '''主要分⽀'''
        elif self.r > 0 and not self.merged:
            result = F.linear(x, transpose(self.weight, self.fan_in_fan_out), 
bias=self.bias)

            if self.r > 0:
                result += self.lora_B(self.lora_A(self.lora_dropout(x))) * self.scaling
            return result
        else:
            return F.linear(x, transpose(self.weight, self.fan_in_fan_out), 
bias=self.bias)

import torch.nn as nn

from transformers import AutoTokenizer, AutoModel

from peft import get_peft_model, LoraConfig, TaskType, PeftModel

from transformers import Trainer

# 加载基座模型
tokenizer = AutoTokenizer.from_pretrained(MODEL_PATH, trust_remote_code=True)

model = AutoModel.from_pretrained(

    MODEL_PATH, trust_remote_code=True
)



注意，对不同的模型，LoRA 参数可能有所区别。例如，对于 ChatGLM，⽆需指定 target_modeules，peft 可以
⾃⾏找到；对于 BaiChuan，就需要⼿动指定。task_type 是模型的任务类型，⼤模型⼀般都是 CAUSAL_LM 即传
统语⾔模型。

然后获取 LoRA 模型：

此处的 get_peft_model 的底层操作，即为上⽂分析的具体实现。

最后使⽤ transformers 提供的 Trainer 进⾏训练即可，训练占⽤的显存就会有⼤幅度的降低：

如果是应⽤在 DPO、KTO 上，则也相同的加⼊ LoRA 参数并通过 get_peft_model  获取⼀个 LoRA 模型即可，其
他的不需要进⾏任何修改。但要注意的是，LoRA 微调能够⼤幅度降低显卡占⽤，且在下游任务适配上能够取得较
好的效果，但如果是需要学习对应知识的任务，LoRA 由于只调整低秩矩阵，难以实现知识的注⼊，⼀般效果不
佳，因此不推荐使⽤ LoRA 进⾏模型预训练或后训练。

参考资料

[1] Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Morrone, Quentin de Laroussilhe, Andrea 
Gesmundo, Mona Attariyan, and Sylvain Gelly. (2019). Parameter-Efficient Transfer Learning for NLP. arXiv 
preprint arXiv:1902.00751.

[2] Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and 
Weizhu Chen. (2021). LoRA: Low-Rank Adaptation of Large Language Models. arXiv preprint arXiv:2106.09685.

[3] Armen Aghajanyan, Luke Zettlemoyer, and Sonal Gupta. (2020). Intrinsic Dimensionality Explains the 
Effectiveness of Language Model Fine-Tuning. arXiv preprint arXiv:2012.13255.

[4] Xiang Lisa Li 和 Percy Liang. (2021). Prefix-Tuning: Optimizing Continuous Prompts for Generation. arXiv 
preprint arXiv:2101.00190.

peft_config = LoraConfig(

            task_type=TaskType.CAUSAL_LM,
            inference_mode=False,
            r=8,
            lora_alpha=32,
            lora_dropout=0.1,
        )

model = get_peft_model(model, peft_config)

trainer = Trainer(

    model=model,
    args=training_args,
    train_dataset= IterableWrapper(train_dataset),
    tokenizer=tokenizer
)

trainer.train()



⼤模型应⽤  
7.1 LLM 的评测  
近年来，随着⼈⼯智能领域的迅猛发展，⼤规模预训练语⾔模型（简称⼤模型）成为了推动技术进步的核⼼⼒量。
这些⼤模型在⾃然语⾔处理等任务中展现出了令⼈惊叹的能⼒。然⽽，要准确衡量⼀个⼤模型的性能，必须依靠科
学⽽合理的评测。

什么是⼤模型评测？⼤模型评测就是通过各种标准化的⽅法和数据集，对⼤模型在不同任务上的表现进⾏量化和⽐
较。这些评测不仅包括模型在特定任务上的准确性，还涉及模型的泛化能⼒、推理速度、资源消耗等多个⽅⾯。通
过评测，我们能够更全⾯地了解⼤模型的实际表现，以及它们在现实世界中的应⽤潜⼒。

⼤模型的开发成本⾼昂，涉及⼤量的计算资源和数据，因此评测对于确保模型的实际价值⾄关重要。⾸先，评测能
够揭示模型在各种任务中的表现，帮助研究⼈员和企业判断模型的适⽤性和可靠性。其次，评测可以暴露模型的潜
在弱点，例如偏⻅、鲁棒性问题等，从⽽为进⼀步优化和改进提供依据。此外，公平、公开的评测还为学术界和⼯
业界提供了⼀个共同的标准，促进了技术的交流与进步。

7.1.1 LLM 的评测数据集  

在⼤模型的评测过程中，使⽤标准化的评测集⾄关重要。⽬前，主流的⼤模型评测集主要从以下⼏个⽅⾯进⾏评
估，每个评测集都有其独特的⽤途和典型应⽤场景：

1. 通⽤评测集：

MMLU（Massive Multitask Language Understanding）：MMLU评测模型在多种任务中的理解能
⼒，包括各类学科和知识领域。具体包含了历史、数学、物理、⽣物、法律等任务类型，全⾯考察模型
在不同学科的知识储备和语⾔理解能⼒。

2. ⼯具使⽤评测集：

BFCL V2：⽤于评测模型在复杂⼯具使⽤任务中的表现，特别是在执⾏多步骤操作时的正确性和效率。
这些任务通常涉及与数据库交互或执⾏特定指令，以模拟实际⼯具使⽤场景。

3. 数学评测集：

GSM8K：GSM8K是⼀个包含⼩学数学问题的数据集，⽤于测试模型的数学推理和逻辑分析能⼒。具体
任务包括算术运算、简单⽅程求解、数字推理等。GSM8K中的问题虽然看似简单，但模型需要理解问题
语义并进⾏正确的数学运算，体现了逻辑推理和语⾔理解的双重挑战。

MATH：MATH数据集⽤于测试模型在更复杂的数学问题上的表现，包括代数和⼏何。

4. 推理评测集：

ARC Challenge：ARC Challenge评测模型在科学推理任务中的表现，尤其是常识性和科学性问题的解
答，典型应⽤场景包括科学考试题解答和百科问答系统的开发。

GPQA：⽤于评测模型在零样本条件下对开放性问题的回答能⼒，通常应⽤于客服聊天机器⼈和知识问
答系统中，帮助模型在缺乏特定领域数据的情况下给出合理的回答。

HellaSwag：评测模型在复杂语境下选择最符合逻辑的答案的能⼒，适⽤于故事续写、对话⽣成等需要
⾼⽔平理解和推理的场景。

5. ⻓⽂本理解评测集：



InfiniteBench/En.MC：评测模型在处理⻓⽂本阅读理解⽅⾯的能⼒，尤其是对科学⽂献的理解，适⽤
于学术⽂献⾃动摘要、⻓篇报道分析等应⽤场景。

NIH/Multi-needle：⽤于测试模型在多样本⻓⽂档环境中的理解和总结能⼒，应⽤于政府报告解读、企
业内部⻓⽂档分析等需要处理海量信息的场景。

6. 多语⾔评测集：

MGSM：⽤于评估模型在不同语⾔下的数学问题解决能⼒，考察模型的多语⾔适应性，尤其适⽤于国际
化环境中的数学教育和跨语⾔技术⽀持场景。

这些评测集的多样性帮助我们全⾯评估⼤模型在不同任务和应⽤场景中的表现，确保模型在处理多样化任务时能够
保持⾼效和精准的表现。例如，在MMLU评测中，某些⼤模型在历史、物理等学科任务中表现优异，展现出对多领
域知识的深度理解；在GSM8K数学评测中，最新的⼤模型在算术和⽅程求解⽅⾯表现接近甚⾄超越了⼀些⼈类基
准，显示出在复杂数学推理任务中的潜⼒。这些实际评测结果展示了模型在各类复杂任务中的进步和应⽤潜⼒。

7.1.2 主流的评测榜单  

⼤模型的评测不仅限于使⽤特定的数据集，许多机构还会根据评测结果发布模型排⾏榜，这些榜单为学术界和⼯业
界提供了重要的参考，帮助他们了解当前最前沿的技术和模型。以下是⼀些主流的评测榜单：

Open LLM Leaderboard  

Open LLM Leaderboard 为由 Hugging Face 提供的开放式榜单，汇集了多个开源⼤模型的评测结果，帮助⽤户了
解不同模型在各种任务上的表现。该榜单通过多个标准化测试集来评估模型的性能，并通过持续更新的⽅式反映最
新的技术进展，为研究者和开发者提供了⾼价值的对⽐参考，如图7.1所示。



图 7.1 Open LLM Leaderboard

Lmsys Chatbot Arena Leaderboard  

由lmsys提供的聊天机器⼈评测榜单，通过多维度的评估，展示各类⼤模型在对话任务中的能⼒。该榜单采⽤真实
⽤户与模型交互的⽅式来评测对话质量，重点考察模型的⾃然语⾔⽣成能⼒、上下⽂理解能⼒以及⽤户满意度，是
当前评估聊天机器⼈性能的重要⼯具，如图7.2所示。



图7.2 Lmsys Chatbot Arena Leaderboard

OpenCompass  

OpenCompass 是国内的评测榜单，针对⼤模型在多种语⾔和任务上的表现进⾏评估，提供了中国市场特定应⽤的
参考。该榜单结合了中⽂语⾔理解和多语⾔能⼒的测试，以适应本地化需求，并特别关注⼤模型在中⽂语境下的准
确性、鲁棒性和适应性，为国内企业和研究者选择合适的模型提供了重要参考。



图7.3 OpenCompass

7.1.3 特定的评测榜单  

另外，还有针对不同领域特定任务的⼤模型评测榜单，如图7.4所示。这些榜单专注于特定应⽤领域，帮助⽤户了
解⼤模型在某⼀垂直领域的能⼒：

⾦融榜：基于CFBenchmark评测集，评估⼤模型在⾦融⾃然语⾔处理、⾦融预测计算、⾦融分析与安全检查
等多项基础任务中的能⼒。由同济⼤学与上海⼈⼯智能实验室及东⽅财经提供。

安全榜：基于Flames评测集，评估⼤模型在公平、安全、数据保护以及合法五⼤维度的抗性，帮助深⼊了解
模型在安全性上的表现。由上海⼈⼯智能实验室与复旦⼤学提供。

通识榜：基于BotChat评测集，评估⼤语⾔模型⽣成⽇常多轮对话能⼒的综合程度，判断模型在对话中是否具
备类⼈⽔平。由上海⼈⼯智能实验室提供。

法律榜：基于LawBench评测集，评估模型在法律领域的理解、推理和应⽤能⼒，涵盖法律问题回答、⽂本⽣
成、法律判例分析等任务。由南京⼤学提供。



医疗榜：基于MedBench评测集，评估⼤语⾔模型在医学知识问答、安全伦理理解等⽅⾯的表现。由上海⼈⼯
智能实验室提供。

图7.4 垂直领域榜单

 

7.2 RAG  

7.2.1 RAG 的基本原理  

⼤语⾔模型（LLM）在⽣成内容时，虽然具备强⼤的语⾔理解和⽣成能⼒，但也⾯临着⼀些挑战。例如，LLM有时
会⽣成不准确或误导性的内容，这被称为⼤模型“幻觉”。此外，模型所依赖的训练数据可能过时，尤其在⾯对最新
的信息时，⽣成结果的准确性和时效性难以保证。对于特定领域的专业知识，LLM 的处理效率也较低，⽆法深⼊理
解复杂的领域知识。因此，如何提升⼤模型的⽣成质量和效率，成为了当前研究的重要⽅向。

在这样的背景下，检索增强⽣成（Retrieval-Augmented Generation，RAG）技术应运⽽⽣，成为AI领域中的⼀⼤
创新趋势。RAG 在⽣成答案之前，⾸先从外部的⼤规模⽂档数据库中检索出相关信息，并将这些信息融⼊到⽣成过
程之中，从⽽指导和优化语⾔模型的输出。这⼀流程不仅极⼤地提升了内容⽣成的准确性和相关性，还使得⽣成的
内容更加符合实时性要求。

RAG 的核⼼原理在于将“检索”与“⽣成”结合：当⽤户提出查询时，系统⾸先通过检索模块找到与问题相关的⽂本⽚
段，然后将这些⽚段作为附加信息传递给语⾔模型，模型据此⽣成更为精准和可靠的回答。通过这种⽅式，RAG 有
效缓解了⼤语⾔模型的“幻觉”问题，因为⽣成的内容建⽴在真实⽂档的基础上，使得答案更具可追溯性和可信度。
同时，由于引⼊了最新的信息源，RAG 技术⼤⼤加快了知识更新速度，使得系统可以及时吸收和反映最新的领域动
态。



7.2.2 搭建⼀个 RAG 框架  

接下来我会带领⼤家⼀步⼀步实现⼀个简单的RAG模型，这个模型是基于RAG的⼀个简化版本，我们称之为 Tiny-
RAG 。Tiny-RAG只保留了 RAG 的核⼼功能，即检索和⽣成，其⽬的是帮助⼤家更好地理解 RAG 模型的原理和实
现。

Step 1: RAG流程介绍  

RAG通过在语⾔模型⽣成答案之前，先从⼴泛的⽂档数据库中检索相关信息，然后利⽤这些信息来引导⽣成过程，
从⽽极⼤地提升了内容的准确性和相关性。RAG有效地缓解了幻觉问题，提⾼了知识更新的速度，并增强了内容⽣
成的可追溯性，使得⼤型语⾔模型在实际应⽤中变得更加实⽤和可信。

RAG的基本结构有哪些呢？

向量化模块：⽤来将⽂档⽚段向量化。

⽂档加载和切分模块：⽤来加载⽂档并切分成⽂档⽚段。

数据库：存放⽂档⽚段及其对应的向量表示。

检索模块：根据 Query（问题）检索相关的⽂档⽚段。

⼤模型模块：根据检索到的⽂档回答⽤户的问题。

上述也就是 TinyRAG 的所有模块内容，如图7.5所示。

图7.5 TinyRAG 项⽬结构

接下来，让我们梳理⼀下RAG的流程是什么样的呢？

索引：将⽂档库分割成较短的⽚段，并通过编码器构建向量索引。

检索：根据问题和⽚段的相似度检索相关⽂档⽚段。

⽣成：以检索到的上下⽂为条件，⽣成问题的回答。

如下图7.6所示的流程图，图⽚出处 Retrieval-Augmented Generation for Large Language Models: A Survey

https://arxiv.org/pdf/2312.10997.pdf


图7.6 RAG 流程图

Step 2: ⽂档加载和切分  

接下来我们来实现⼀个⽂档加载和切分的类，这个类主要⽤于加载⽂档并将其切分成⽂档⽚段。

⽂档可以是⽂章、书籍、对话、代码等⽂本内容，例如pdf⽂件、md⽂件、txt⽂件等。完整代码可以在 
RAG/utils.py ⽂件中找到。该代码⽀持加载pdf、md、txt等类型的⽂件，只需编写相应的函数即可。

⽂档读取后需要进⾏切分。我们可以设置⼀个最⼤的Token⻓度，然后根据这个最⼤⻓度来切分⽂档。切分⽂档时
最好以句⼦为单位（按 \n粗切分），并保证⽚段之间有⼀些重叠内容，以提⾼检索的准确性。

def read_file_content(cls, file_path: str):

    # 根据⽂件扩展名选择读取⽅法
    if file_path.endswith('.pdf'):
        return cls.read_pdf(file_path)
    elif file_path.endswith('.md'):
        return cls.read_markdown(file_path)
    elif file_path.endswith('.txt'):
        return cls.read_text(file_path)
    else:
        raise ValueError("Unsupported file type")

def get_chunk(cls, text: str, max_token_len: int = 600, cover_content: int = 150):

    chunk_text = []

    curr_len = 0
    curr_chunk = ''

    token_len = max_token_len - cover_content
    lines = text.splitlines()  # 假设以换⾏符分割⽂本为⾏



    for line in lines:
        # 保留空格，只移除⾏⾸⾏尾空格
        line = line.strip()
        line_len = len(enc.encode(line))
        
        if line_len > max_token_len:
            # 如果单⾏⻓度就超过限制，则将其分割成多个块
            # 先保存当前块（如果有内容）
            if curr_chunk:
                chunk_text.append(curr_chunk)
                curr_chunk = ''
                curr_len = 0
            
            # 将⻓⾏按token⻓度分割
            line_tokens = enc.encode(line)
            num_chunks = (len(line_tokens) + token_len - 1) // token_len
            
            for i in range(num_chunks):
                start_token = i * token_len
                end_token = min(start_token + token_len, len(line_tokens))
                
                # 解码token⽚段回⽂本
                chunk_tokens = line_tokens[start_token:end_token]
                chunk_part = enc.decode(chunk_tokens)
                
                # 添加覆盖内容（除了第⼀个块）
                if i > 0 and chunk_text:
                    prev_chunk = chunk_text[-1]
                    cover_part = prev_chunk[-cover_content:] if len(prev_chunk) > 
cover_content else prev_chunk

                    chunk_part = cover_part + chunk_part
                
                chunk_text.append(chunk_part)
            
            # 重置当前块状态
            curr_chunk = ''
            curr_len = 0
            
        elif curr_len + line_len + 1 <= token_len:  # +1 for newline
            # 当前⾏可以加⼊当前块
            if curr_chunk:
                curr_chunk += '\n'
                curr_len += 1
            curr_chunk += line
            curr_len += line_len
        else:
            # 当前⾏⽆法加⼊当前块，开始新块
            if curr_chunk:
                chunk_text.append(curr_chunk)
            
            # 开始新块，添加覆盖内容
            if chunk_text:



Step 3: 向量化  

⾸先我们来动⼿实现⼀个向量化的类，这是RAG架构的基础。向量化类主要⽤来将⽂档⽚段向量化，将⼀段⽂本映
射为⼀个向量。

⾸先我们要设置⼀个 BaseEmbeddings  基类，这样我们在使⽤其他模型时，只需要继承这个基类，然后在此基础
上进⾏修改即可，⽅便代码扩展。

                prev_chunk = chunk_text[-1]
                cover_part = prev_chunk[-cover_content:] if len(prev_chunk) > 
cover_content else prev_chunk

                curr_chunk = cover_part + '\n' + line
                curr_len = len(enc.encode(cover_part)) + 1 + line_len
            else:
                curr_chunk = line
                curr_len = line_len

    # 添加最后⼀个块（如果有内容）
    if curr_chunk:
        chunk_text.append(curr_chunk)

    return chunk_text

class BaseEmbeddings:

    """
    Base class for embeddings
    """
    def __init__(self, path: str, is_api: bool) -> None:
        """
        初始化嵌⼊基类
        Args:
            path (str): 模型或数据的路径
            is_api (bool): 是否使⽤API⽅式。True表示使⽤在线API服务，False表示使⽤本地模型
        """
        self.path = path
        self.is_api = is_api
    
    def get_embedding(self, text: str, model: str) -> List[float]:
        """
        获取⽂本的嵌⼊向量表示
        Args:
            text (str): 输⼊⽂本
            model (str): 使⽤的模型名称
        Returns:
            List[float]: ⽂本的嵌⼊向量
        Raises:
            NotImplementedError: 该⽅法需要在⼦类中实现
        """
        raise NotImplementedError
    
    @classmethod



BaseEmbeddings基类有两个主要⽅法： get_embedding和 cosine_similarity。 get_embedding⽤于获取⽂
本的向量表示， cosine_similarity⽤于计算两个向量之间的余弦相似度。在初始化类时设置了模型的路径和是
否是API模型，例如使⽤OpenAI的Embedding API需要设置 self.is_api=True。

继承 BaseEmbeddings类只需要实现 get_embedding⽅法， cosine_similarity⽅法会被继承下来。这就是编写
基类的好处。

    def cosine_similarity(cls, vector1: List[float], vector2: List[float]) -> float:
        """
        计算两个向量之间的余弦相似度
        Args:
            vector1 (List[float]): 第⼀个向量
            vector2 (List[float]): 第⼆个向量
        Returns:
            float: 两个向量的余弦相似度，范围在[-1,1]之间
        """
        # 将输⼊列表转换为numpy数组，并指定数据类型为float32

        v1 = np.array(vector1, dtype=np.float32)
        v2 = np.array(vector2, dtype=np.float32)

        # 检查向量中是否包含⽆穷⼤或NaN值
        if not np.all(np.isfinite(v1)) or not np.all(np.isfinite(v2)):
            return 0.0

        # 计算向量的点积
        dot_product = np.dot(v1, v2)
        # 计算向量的范数（⻓度）
        norm_v1 = np.linalg.norm(v1)
        norm_v2 = np.linalg.norm(v2)
        
        # 计算分⺟（两个向量范数的乘积）
        magnitude = norm_v1 * norm_v2
        # 处理分⺟为0的特殊情况
        if magnitude == 0:
            return 0.0
            
        # 返回余弦相似度
        return dot_product / magnitude

class OpenAIEmbedding(BaseEmbeddings):

    """
    class for OpenAI embeddings
    """
    def __init__(self, path: str = '', is_api: bool = True) -> None:
        super().__init__(path, is_api)
        if self.is_api:
            self.client = OpenAI()
            # 从环境变量中获取 硅基流动 密钥
            self.client.api_key = os.getenv("OPENAI_API_KEY")
            # 从环境变量中获取 硅基流动 的基础URL
            self.client.base_url = os.getenv("OPENAI_BASE_URL")



注：此处我们默认使⽤国内⽤户可访问的硅基流动⼤模型API服务平台。

Step 4: 数据库与向量检索  

完成⽂档切分和Embedding模型加载后，需要设计⼀个向量数据库来存放⽂档⽚段和对应的向量表示，以及设计⼀
个检索模块⽤于根据Query检索相关⽂档⽚段。

向量数据库的功能包括：

persist：数据库持久化保存。

load_vector：从本地加载数据库。

get_vector：获取⽂档的向量表示。

query：根据问题检索相关⽂档⽚段。

完整代码可以在 /VectorBase.py ⽂件中找到。

query  ⽅法⽤于将⽤户提出的问题向量化，然后在数据库中检索相关⽂档⽚段并返回结果。

    
    def get_embedding(self, text: str, model: str = "BAAI/bge-m3") -> List[float]:
        """
        此处默认使⽤轨迹流动的免费嵌⼊模型 BAAI/bge-m3
        """
        if self.is_api:
            text = text.replace("\n", " ")
            return self.client.embeddings.create(input=[text], 
model=model).data[0].embedding

        else:
            raise NotImplementedError

class VectorStore:

    def __init__(self, document: List[str] = ['']) -> None:
        self.document = document

    def get_vector(self, EmbeddingModel: BaseEmbeddings) -> List[List[float]]:
        # 获得⽂档的向量表示
        pass

    def persist(self, path: str = 'storage'):
        # 数据库持久化保存
        pass

    def load_vector(self, path: str = 'storage'):
        # 从本地加载数据库
        pass

    def query(self, query: str, EmbeddingModel: BaseEmbeddings, k: int = 1) -> List[str]:
        # 根据问题检索相关⽂档⽚段
        pass

https://cloud.siliconflow.cn/i/ybUFvmqK


Step 5: ⼤模型模块  

接下来是⼤模型模块，⽤于根据检索到的⽂档回答⽤户的问题。

⾸先实现⼀个基类，这样可以⽅便扩展其他模型。

BaseModel  包含两个⽅法： chat和 load_model。对于本地化运⾏的开源模型需要实现 load_model，⽽API模
型则不需要。在此处我们还是使⽤国内⽤户可访问的硅基流动⼤模型API服务平台，使⽤API服务的好处就是⽤户不
需要本地的计算资源，可以⼤⼤降低学习者的学习⻔槛。

设计⼀个专⽤于RAG的⼤模型提示词，如下：

def query(self, query: str, EmbeddingModel: BaseEmbeddings, k: int = 1) -> List[str]:

    query_vector = EmbeddingModel.get_embedding(query)
    result = np.array([self.get_similarity(query_vector, vector) for vector in 
self.vectors])

    return np.array(self.document)[result.argsort()[-k:][::-1]].tolist()

class BaseModel:

    def __init__(self, path: str = '') -> None:
        self.path = path

    def chat(self, prompt: str, history: List[dict], content: str) -> str:
        pass

    def load_model(self):
        pass

from openai import OpenAI

class OpenAIChat(BaseModel):

    def __init__(self, model: str = "Qwen/Qwen2.5-32B-Instruct") -> None:
        self.model = model

    def chat(self, prompt: str, history: List[dict], content: str) -> str:
        client = OpenAI()
        client.api_key = os.getenv("OPENAI_API_KEY")   
        client.base_url = os.getenv("OPENAI_BASE_URL")
        history.append({'role': 'user', 'content': 
RAG_PROMPT_TEMPLATE.format(question=prompt, context=content)})

        response = client.chat.completions.create(
                model=self.model,
                messages=history,
                max_tokens=2048,
                temperature=0.1
            )
        return response.choices[0].message.content



这样我们就可以利⽤InternLM2模型来做RAG啦！

Step 6: Tiny-RAG Demo  

接下来，我们来看看Tiny-RAG的Demo吧！

也可以从本地加载已处理好的数据库：

RAG_PROMPT_TEMPLATE="""

使⽤以上下⽂来回答⽤户的问题。如果你不知道答案，就说你不知道。总是使⽤中⽂回答。
问题: {question}
可参考的上下⽂：
···

{context}

···

如果给定的上下⽂⽆法让你做出回答，请回答数据库中没有这个内容，你不知道。
有⽤的回答:
"""

from VectorBase import VectorStore

from utils import ReadFiles

from LLM import OpenAIChat

from Embeddings import OpenAIEmbedding

# 没有保存数据库
docs = ReadFiles('./data').get_content(max_token_len=600, cover_content=150) # 获得data⽬录
下的所有⽂件内容并分割
vector = VectorStore(docs)

embedding = OpenAIEmbedding() # 创建EmbeddingModel
vector.get_vector(EmbeddingModel=embedding)

vector.persist(path='storage') # 将向量和⽂档内容保存到storage⽬录下，下次再⽤就可以直接加载本地的数
据库

# vector.load_vector('./storage') # 加载本地的数据库

question = 'RAG的原理是什么？'

content = vector.query(question, EmbeddingModel=embedding, k=1)[0]

chat = OpenAIChat(model='Qwen/Qwen2.5-32B-Instruct')

print(chat.chat(question, [], content))

from VectorBase import VectorStore

from utils import ReadFiles

from LLM import OpenAIChat

from Embeddings import OpenAIEmbedding

# 保存数据库之后
vector = VectorStore()

vector.load_vector('./storage') # 加载本地的数据库



注：7.2 章节的所有代码均可在 Happy-LLM Chapter7 RAG 中找到。

7.3 Agent  

7.3.1 什么是 LLM Agent？  

简单来说，⼤模型Agent是⼀个以LLM为核⼼“⼤脑”，并赋予其⾃主规划、记忆和使⽤⼯具能⼒的系统。 它不再仅
仅是被动地响应⽤户的提示（Prompt），⽽是能够：

1. 理解⽬标（Goal Understanding）： 接收⼀个相对复杂或⾼层次的⽬标（例如，“帮我规划⼀个周末去北京的
旅游⾏程并预订机票酒店”）。

2. ⾃主规划（Planning）： 将⼤⽬标分解成⼀系列可执⾏的⼩步骤（例如，“搜索北京景点”、“查询天⽓”、“⽐
较机票价格”、“查找合适的酒店”、“调⽤预订API”等）。

3. 记忆（Memory）： 拥有短期记忆（记住当前任务的上下⽂）和⻓期记忆（从过去的交互或外部知识库中学
习和检索信息）。

4. ⼯具使⽤（Tool Use）： 调⽤外部API、插件或代码执⾏环境来获取信息（如搜索引擎、数据库）、执⾏操作
（如发送邮件、预订服务）或进⾏计算。

5. 反思与迭代（Reflection & Iteration）： （在更⾼级的Agent中）能够评估⾃⼰的⾏为和结果，从中学习并调
整后续计划。

传统的LLM像⼀个知识渊博但只能纸上谈兵的图书馆员，⽽ LLM Agent 则更像⼀个全能的私⼈助理，不仅懂得
多，还能跑腿办事，甚⾄能主动思考最优⽅案。

question = 'RAG的原理是什么？'

embedding = ZhipuEmbedding() # 创建EmbeddingModel

content = vector.query(question, EmbeddingModel=embedding, k=1)[0]

chat = OpenAIChat(model='Qwen/Qwen2.5-32B-Instruct')

print(chat.chat(question, [], content))

https://github.com/datawhalechina/happy-llm/tree/main/docs/chapter7/RAG


图7.7 Agent ⼯作原理

LLM Agent 通过将⼤型语⾔模型的强⼤语⾔理解和⽣成能⼒与规划、记忆和⼯具使⽤等关键模块相结合，实现了超
越传统⼤模型的⾃主性和复杂任务处理能⼒，这种能⼒使得 LLM Agent 在许多垂直领域（如法律、医疗、⾦融
等）都具有⼴泛的应⽤潜⼒，如图7.7所示 Agent ⼯作原理。

7.3.2 LLM Agent 的类型  

虽然LLM Agent的概念还在快速发展中，但根据其设计理念和能⼒侧重，我们可以⼤致将其分为⼏类：

任务导向型Agent（Task-Oriented Agents）：

特点： 专注于完成特定领域的、定义明确的任务，例如客户服务、代码⽣成、数据分析等。

⼯作⽅式： 通常有预设的流程和可调⽤的特定⼯具集。LLM主要负责理解⽤户意图、填充任务槽位、⽣成回
应或调⽤合适- 的⼯具。

例⼦： 专⻔⽤于预订餐厅的聊天机器⼈、辅助编程的代码助⼿（如GitHub Copilot在某些⾼级功能上体现了
Agent特性）。

规划与推理型Agent（Planning & Reasoning Agents）：

特点： 强调⾃主分解复杂任务、制定多步计划，并根据环境反馈进⾏调整的能⼒。它们通常需要更强的推理
能⼒。



⼯作⽅式： 常采⽤特定的思维框架，如ReAct (Reason+Act)，让模型先进⾏“思考”（Reasoning）分析当前情
况和所需⾏动，然后执⾏“⾏动”（Action）调⽤⼯具，再根据⼯具返回结果进⾏下⼀轮思考。Chain-of-
Thought (CoT) 等提示⼯程技术也是其推理的基础。

例⼦： 需要整合⽹络搜索、计算器、数据库查询等多种⼯具来回答复杂问题的研究型Agent，或者能够⾃主完
成“写⼀篇关于XX主题的报告，并配上相关数据图表”这类任务的Agent。

多Agent系统（Multi-Agent Systems）：

特点： 由多个具有不同⻆⾊或能⼒的Agent协同⼯作，共同完成⼀个更宏⼤的⽬标。

⼯作⽅式： Agent之间可以进⾏通信、协作、辩论甚⾄竞争。例如，⼀个Agent负责规划，⼀个负责执⾏，⼀
个负责审查。

例⼦： 模拟软件开发团队（产品经理Agent、程序员Agent、测试员Agent）来⾃动⽣成和测试代码；模拟⼀
个公司组织结构来完成商业策划。AutoGen、ChatDev等框架⽀持这类系统的构建。

探索与学习型Agent（Exploration & Learning Agents）：

特点： 这类Agent不仅执⾏任务，还能在与环境的交互中主动学习新知识、新技能或优化⾃身策略，类似于强
化学习中的Agent概念。

⼯作⽅式： 可能包含更复杂的记忆和反思机制，能够根据成功或失败的经验调整未来的规划和⾏动。

例⼦： 能在未知软件环境中⾃主探索学习如何操作的Agent，或者在玩游戏时不断提升策略的Agent。

7.3.3 动⼿构造⼀个 Tiny-Agent  

我们来基于 openai  库和其 tool_calls  功能，动⼿构造⼀个 Tiny-Agent，这个 Agent 是⼀个简单的任务导向型 
Agent，它能够根据⽤户的输⼊，回答⼀些简单的问题。

最终的实现效果如图7.8所示：

图7.8 效果示意图

Step 1 : 初始化客户端和模型  

⾸先，我们需要⼀个能够调⽤⼤模型的客户端。这⾥我们使⽤ openai  库，并配置其指向⼀个兼容 OpenAI API 的
服务终端，例如 SiliconFlow。同时，指定要使⽤的模型，如 Qwen/Qwen2.5-32B-Instruct。

https://cloud.siliconflow.cn/i/ybUFvmqK


注意: 你需要将 YOUR_API_KEY  替换为你从 SiliconFlow 或其他服务商获取的有效 API Key。

Step 2: 定义⼯具函数  

我们在 src/tools.py  ⽂件中定义 Agent 可以使⽤的⼯具函数。每个函数都需要有清晰的⽂档字符串
（docstring），描述其功能和参数，因为这将⽤于⾃动⽣成⼯具的 JSON Schema。

from openai import OpenAI

# 初始化 OpenAI 客户端
client = OpenAI(

    api_key="YOUR_API_KEY",  # 替换为你的 API Key
    base_url="https://api.siliconflow.cn/v1", # 使⽤ SiliconFlow 的 API 地址
)

# 指定模型名称
model_name = "Qwen/Qwen2.5-32B-Instruct"

# src/tools.py

from datetime import datetime

# 获取当前⽇期和时间
def get_current_datetime() -> str:

    """
    获取当前⽇期和时间。
    :return: 当前⽇期和时间的字符串表示。
    """
    current_datetime = datetime.now()
    formatted_datetime = current_datetime.strftime("%Y-%m-%d %H:%M:%S")
    return formatted_datetime

def count_letter_in_string(a: str, b: str):

    """
    统计字符串中某个字⺟的出现次数。
    :param a: 要搜索的字符串。
    :param b: 要统计的字⺟。
    :return: 字⺟在字符串中出现的次数。
    """
    return str(a.count(b))

def search_wikipedia(query: str) -> str:

    """
    在维基百科中搜索指定查询的前三个⻚⾯摘要。
    :param query: 要搜索的查询字符串。
    :return: 包含前三个⻚⾯摘要的字符串。
    """
    page_titles = wikipedia.search(query)
    summaries = []
    for page_title in page_titles[: 3]:  # 取前三个⻚⾯标题
        try:
            # 使⽤ wikipedia 模块的 page 函数，获取指定标题的维基百科⻚⾯对象。

https://cloud.siliconflow.cn/i/ybUFvmqK


为了让 OpenAI API 理解这些⼯具，我们需要将它们转换成特定的 JSON Schema 格式。这可以通过 
src/utils.py  中的 function_to_json  辅助函数完成。

Step 3: 构造 Agent 类  

我们在 src/core.py  ⽂件中定义 Agent  类。这个类负责管理对话历史、调⽤ OpenAI API、处理⼯具调⽤请求以
及执⾏⼯具函数。

            wiki_page = wikipedia.page(title=page_title, auto_suggest=False)
            # 获取⻚⾯摘要
            summaries.append(f"⻚⾯: {page_title}\n摘要: {wiki_page.summary}")

        except (
                wikipedia.exceptions.PageError,
                wikipedia.exceptions.DisambiguationError,
        ):
            pass
    if not summaries:
        return "维基百科没有搜索到合适的结果"
    return "\n\n".join(summaries)
# ... (可能还有其他⼯具函数)

# src/utils.py (部分)

import inspect

def function_to_json(func) -> dict:

    # ... (函数实现细节)
    # 返回符合 OpenAI tool schema 的字典
    return {
        "type": "function",
        "function": {
            "name": func.__name__,
            "description": inspect.getdoc(func),
            "parameters": {
                "type": "object",
                "properties": parameters,
                "required": required,
            },
        },
    }

# src/core.py (部分)
from openai import OpenAI

import json

from typing import List, Dict, Any

from utils import function_to_json

# 导⼊定义好的⼯具函数
from tools import get_current_datetime, add, compare, count_letter_in_string

SYSTEM_PROMPT = """

你是⼀个叫不要葱姜蒜的⼈⼯智能助⼿。你的输出应该与⽤户的语⾔保持⼀致。
当⽤户的问题需要调⽤⼯具时，你可以从提供的⼯具列表中调⽤适当的⼯具函数。



"""

class Agent:

    def __init__(self, client: OpenAI, model: str = "Qwen/Qwen2.5-32B-Instruct", tools: 
List=[], verbose : bool = True):

        self.client = client
        self.tools = tools
        self.model = model
        self.messages = [
            {"role": "system", "content": SYSREM_PROMPT},
        ]
        self.verbose = verbose

    def get_tool_schema(self) -> List[Dict[str, Any]]:
        # 获取所有⼯具的 JSON 模式
        return [function_to_json(tool) for tool in self.tools]

    def handle_tool_call(self, tool_call):
        # 处理⼯具调⽤
        function_name = tool_call.function.name
        function_args = tool_call.function.arguments
        function_id = tool_call.id

        function_call_content = eval(f"{function_name}(**{function_args})")

        return {
            "role": "tool",
            "content": function_call_content,
            "tool_call_id": function_id,
        }

    def get_completion(self, prompt) -> str:

        self.messages.append({"role": "user", "content": prompt})

        # 获取模型的完成响应
        response = self.client.chat.completions.create(
            model=self.model,
            messages=self.messages,
            tools=self.get_tool_schema(),
            stream=False,
        )
        
        # 检查模型是否调⽤了⼯具        
        if response.choices[0].message.tool_calls:
            self.messages.append({"role": "assistant", "content": 
response.choices[0].message.content})

            # 处理⼯具调⽤
            tool_list = []
            for tool_call in response.choices[0].message.tool_calls:
                # 处理⼯具调⽤并将结果添加到消息列表中
                self.messages.append(self.handle_tool_call(tool_call))



Agent 的⼯作流程如下：

1. 接收⽤户输⼊。

2. 调⽤⼤模型（如 Qwen），并告知其可⽤的⼯具及其 Schema。

3. 如果模型决定调⽤⼯具，Agent 会解析请求，执⾏相应的 Python 函数。

4. Agent 将⼯具的执⾏结果返回给模型。

5. 模型根据⼯具结果⽣成最终回复。

6. Agent 将最终回复返回给⽤户。

如图7.9所示，Agent 调⽤⼯具流程：

图7.9 Agent ⼯作流程

                tool_list.append([tool_call.function.name, tool_call.function.arguments])
            if self.verbose:
                print("调⽤⼯具：", response.choices[0].message.content, tool_list)
            # 再次获取模型的完成响应，这次包含⼯具调⽤的结果
            response = self.client.chat.completions.create(
                model=self.model,
                messages=self.messages,
                tools=self.get_tool_schema(),
                stream=False,
            )

        # 将模型的完成响应添加到消息列表中
        self.messages.append({"role": "assistant", "content": 
response.choices[0].message.content})

        return response.choices[0].message.content



Step 4: 运⾏ Agent  

现在我们可以实例化并运⾏ Agent。在 demo.py  的 if __name__ == "__main__":  部分提供了⼀个简单的命令
⾏交互示例。

示例交互:

# demo.py (部分)

if __name__ == "__main__":

    client = OpenAI(
        api_key="YOUR_API_KEY", # 替换为你的 API Key

        base_url="https://api.siliconflow.cn/v1",
    )

    # 创建 Agent 实例，传⼊ client、模型名称和⼯具函数列表
    agent = Agent(
        client=client,
        model="Qwen/Qwen2.5-32B-Instruct",
        tools=[get_current_datetime, add, compare, count_letter_in_string],
        verbose=True # 设置为 True 可以看到⼯具调⽤信息
    )

    # 开始交互式对话循环
    while True:
        # 使⽤彩⾊输出区分⽤户输⼊和AI回答
        prompt = input("\033[94mUser: \033[0m")  # 蓝⾊显示⽤户输⼊提示
        if prompt.lower() == "exit":
            break
        response = agent.get_completion(prompt)
        print("\033[92mAssistant: \033[0m", response)  # 绿⾊显示AI助⼿回答

User: 你好
Assistant:  你好！有什么可以帮助你的吗？
User: 9.12和9 .2哪个更⼤？
调⽤⼯具： ['compare']
Assistant:  9.2 ⽐ 9.12 更⼤。
User: 为什么？
Assistant:  当我们⽐较9.12和9.2时，可以将它们看作是9.12和9.20。由于9.20在⼩数点后第⼆位是0，⽽9.12在
⼩数点后第⼆位是2，所以在⼩数点后第⼀位相等的情况下，9.20（即9.2）⼤于9.12。因此，9.2 ⽐ 9.12 更⼤。
User: strawberry中有⼏个r？
调⽤⼯具： ['count_letter_in_string']
Assistant:  单词 "strawberry" 中有3个字⺟ 'r'。
User: 你确信嘛？
调⽤⼯具： ['count_letter_in_string']
Assistant:  是的，我确定。单词 "strawberry" 中确实有3个字⺟ 'r'。让我们再次确认⼀下，"strawberry" 

中的 'r' 确实出现了3次。
User: 好的 你很薄，现在⼏点 了？
调⽤⼯具： ['get_current_datetime']
Assistant:  当前的时间是2025年4⽉26⽇17:01:33。不过，我注意到您提到“你很薄”，这似乎是⼀个打字错误，如
果您有任何其他问题或者需要进⼀步的帮助，请告诉我！
User: exit



另外，我们也准备了⼀份可以展示的 Streamlit 应⽤，可以运⾏在本地，展示 Agent 的功能。 streamlit run 

web_demo.py  来运⾏，以下为 Agent 运⾏效果。

图 7.10 Streamlit Demo

 

参考⽂献

[1] Hugging Face. (2023). Open LLM Leaderboard: 开源⼤语⾔模型基准测试平台. https://huggingface.co/space
s/open-llm-leaderboard/open_llm_leaderboard  

[2] awacke1. (2023). LMSYS Chatbot Arena Leaderboard: ⼤型语⾔模型竞技场评估平台. https://huggingface.co/s
paces/awacke1/lmsys-chatbot-arena-leaderboard  

[3] OpenCompass 团队. (2023). OpenCompass: ⼤模型统⼀评测平台. https://rank.opencompass.org.cn/home  

[4] OpenCompass ⾦融榜团队. (2024). CFBENCHMARK: ⾦融领域⼤模型评测榜单. https://specialist.opencompas
s.org.cn/CFBenchmark  

[5] OpenCompass 安全榜团队. (2024). Flames: ⼤模型安全评测榜单. https://flames.opencompass.org.cn/leade
rboard  

[6] OpenCompass 通识榜团队. (2024). BotChat: ⼤模型通⽤对话能⼒评测. https://botchat.opencompass.org.c
n/  

https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard
https://huggingface.co/spaces/awacke1/lmsys-chatbot-arena-leaderboard
https://rank.opencompass.org.cn/home
https://specialist.opencompass.org.cn/CFBenchmark
https://flames.opencompass.org.cn/leaderboard
https://botchat.opencompass.org.cn/


[7] OpenCompass 法律榜团队. (2024). LawBench: 法律领域⼤模型评测. https://lawbench.opencompass.org.cn/
leaderboard  

[8] OpenCompass 医疗榜团队. (2024). MedBench: 医疗领域⼤模型评测. https://medbench.opencompass.org.c
n/leaderboard  

[9] Zhi Jing, Yongye Su, and Yikun Han. (2024). When Large Language Models Meet Vector Databases: A Survey. 
arXiv preprint arXiv:2402.01763.

[10] Yunfan Gao, Yun Xiong, Xinyu Gao, Kangxiang Jia, Jinliu Pan, Yuxi Bi, Yi Dai, Jiawei Sun, Meng Wang, and 
Haofen Wang. (2024). Retrieval-Augmented Generation for Large Language Models: A Survey. arXiv preprint 
arXiv:2312.10997.

[11] Zhiruo Wang, Jun Araki, Zhengbao Jiang, Md Rizwan Parvez, 和 Graham Neubig. (2023). Learning to Filter 
Context for Retrieval-Augmented Generation. arXiv preprint arXiv:2311.08377.

[12] Ori Ram, Yoav Levine, Itay Dalmedigos, Dor Muhlgay, Amnon Shashua, Kevin Leyton-Brown 和 Yoav 
Shoham. (2023). In-Context Retrieval-Augmented Language Models. arXiv preprint arXiv:2302.00083.

https://lawbench.opencompass.org.cn/leaderboard
https://medbench.opencompass.org.cn/leaderboard

	🎯 项目介绍
	✨ 你将收获什么？

	📖 内容导航
	模型下载
	PDF 版本下载

	💡 如何学习
	🤝 如何贡献
	🙏 致谢
	核心贡献者
	特别感谢

	Star History
	关于 Datawhale
	📜 开源协议
	前言
	写给读者的建议

	第一章 NLP 基础概念
	1.1 什么是 NLP
	1.2 NLP 发展历程
	早期探索（1940年代 - 1960年代）
	符号主义与统计方法（1970年代 - 1990年代）
	机器学习与深度学习（2000年代至今）

	1.3 NLP 任务
	1.3.1 中文分词
	1.3.2 子词切分
	1.3.3 词性标注
	1.3.4 文本分类
	1.3.5 实体识别
	1.3.6 关系抽取
	1.3.7 文本摘要
	1.3.8 机器翻译
	1.3.9 自动问答

	1.4 文本表示的发展历程
	1.4.1 词向量
	1.4.2 语言模型
	1.4.3 Word2Vec
	1.4.4 ELMo

	参考文献

	第二章 Transformer 架构
	2.1 注意力机制
	2.1.1 什么是注意力机制
	2.1.2 深入理解注意力机制
	2.1.3 注意力机制的实现
	2.1.4 自注意力
	2.1.5 掩码自注意力
	2.1.6 多头注意力

	2.2 Encoder-Decoder
	2.2.1 Seq2Seq 模型
	2.2.2 前馈神经网络
	2.2.3 层归一化
	2.2.4 残差连接
	2.2.5 Encoder
	2.2.6 Decoder

	2.3 搭建一个 Transformer
	2.3.1 Embedding 层
	2.3.2 位置编码
	2.3.3 一个完整的 Transformer


	第三章 预训练语言模型
	3.1 Encoder-only PLM
	3.1.1 BERT
	（1）思想沿承
	（2）模型架构——Encoder Only
	（3）预训练任务——MLM + NSP
	（4）下游任务微调

	3.1.2 RoBERTa
	（1）优化一：去掉 NSP 预训练任务
	（2）优化二：更大规模的预训练数据和预训练步长
	（3）优化三：更大的 bpe 词表

	3.1.3 ALBERT
	（1）优化一：将 Embedding 参数进行分解
	（2）优化二：跨层进行参数共享
	（3）优化三：提出 SOP 预训练任务


	3.2 Encoder-Decoder PLM
	3.2.1 T5 
	（1）模型结构：Encoder-Decoder
	（2）预训练任务
	（3）大一统思想


	3.3 Decoder-Only PLM
	3.3.1 GPT
	（1） 模型架构——Decoder Only
	（2）预训练任务——CLM
	（3）GPT 系列模型的发展

	3.3.2 LLaMA
	（1） 模型架构——Decoder Only
	（2） LLaMA模型的发展历程

	3.3.3 GLM
	（1）模型架构-相对于 GPT 的略微修正
	（2）预训练任务-GLM
	（3）GLM 家族的发展



	第四章 大语言模型
	4.1 什么是 LLM
	4.1.1 LLM 的定义
	4.1.2 LLM 的能力
	（1）涌现能力（Emergent Abilities）
	（2）上下文学习（In-context Learning）
	（3）指令遵循（Instruction Following）
	（4）逐步推理（Step by Step Reasoning）

	4.1.3 LLM 的特点
	（1）多语言支持
	（2）长文本处理
	（3）拓展多模态
	（4）挥之不去的幻觉


	4.2 如何训练一个 LLM
	4.2.1 Pretrain
	4.2.2 SFT
	4.2.3 RLHF


	第五章 动手搭建大模型
	5.1 动手实现一个 LLaMA2 大模型
	5.1.1 定义超参数
	5.1.2 构建 RMSNorm
	5.1.3 构建 LLaMA2 Attention
	5.1.3.1 repeat_kv
	5.1.3.2 旋转嵌入
	5.1.3.3 组装 LLaMA2 Attention

	5.1.4 构建 LLaMA2 MLP模块
	5.1.5 LLaMA2 Decoder Layer
	5.1.6 构建 LLaMA2 模型

	5.2 训练 Tokenizer
	5.2.1 Word-based Tokenizer
	5.2.2 Character-based Tokenizer
	5.2.3 Subword Tokenizer
	（1）Byte Pair Encoding (BPE)
	（2）WordPiece
	（3）Unigram

	5.2.4 训练一个 Tokenizer
	Step 1: 安装和导入依赖库
	Step 2: 加载训练数据
	Step 3: 创建配置文件
	Step 4: 训练 BPE Tokenizer
	Step 5: 使用训练好的 Tokenizer


	5.3 预训练一个小型LLM
	5.3.1 数据下载
	5.3.2 训练 Tokenizer
	5.3.3 Dataset
	PretrainDataset
	SFTDataset

	5.3.4 预训练
	5.3.5 SFT 训练
	5.3.6 使用模型生成文本


	第六章 大模型训练流程实践
	6.1 模型预训练
	6.1.1 框架介绍
	6.1.2 初始化 LLM
	6.1.3 预训练数据处理
	6.1.4 使用 Trainer 进行训练
	6.1.5 使用 DeepSpeed 实现分布式训练

	6.2 模型有监督微调
	6.2.1 Pretrain VS SFT
	6.2.2 微调数据处理

	6.3 高效微调
	6.3.1 高效微调方案
	6.3.2 LoRA 微调
	6.3.3 LoRA 微调的原理
	（1）低秩参数化更新矩阵
	（2）应用于 Transformer

	6.3.4 LoRA 的代码实现
	（1）实现流程
	（2）确定 LoRA 层
	（3）替换 LoRA 层
	（4）训练

	6.3.5 使用 peft 实现 LoRA 微调


	大模型应用
	7.1 LLM 的评测
	7.1.1 LLM 的评测数据集
	7.1.2 主流的评测榜单
	Open LLM Leaderboard
	Lmsys Chatbot Arena Leaderboard
	OpenCompass

	7.1.3 特定的评测榜单

	7.2 RAG 
	7.2.1 RAG 的基本原理
	7.2.2 搭建一个 RAG 框架
	Step 1: RAG流程介绍
	Step 2: 文档加载和切分
	Step 3: 向量化
	Step 4: 数据库与向量检索
	Step 5: 大模型模块
	Step 6: Tiny-RAG Demo


	7.3 Agent
	7.3.1 什么是 LLM Agent？
	7.3.2 LLM Agent 的类型
	7.3.3 动手构造一个 Tiny-Agent
	Step 1 : 初始化客户端和模型
	Step 2: 定义工具函数
	Step 3: 构造 Agent 类
	Step 4: 运行 Agent




